欢迎您阅读、引用和转发!
当前位置:首页 > 第6期 > 基于临界沉积速度的湿法脱硫石灰石供浆系统优化

基于临界沉积速度的湿法脱硫石灰石供浆系统优化

谷小兵1,宁 翔1,孟 磊1,时 浩2,肖海平2

(1.大唐环境产业集团股份有限公司,北京 100097;2.华北电力大学 能源动力与机械工程学院,北京 102206)

摘 要:湿法脱硫系统低负荷运行阶段石灰石供浆泵频繁启动,严重危害设备安全。采用最小不沉积速度试验研究石灰石浆液临界沉积速度,并据此进行供浆系统优化。结果表明,随着管径的增加,临界流速逐渐增大。当管径为40 mm时,临界流速为1.28 m/s,当管径增加到70 mm时,临界流速为1.76 m/s,临界流速增加了37.50%。随着含固率的降低,临界流速逐渐减小。当含固率为20%时,临界流速为1.42 m/s,当含固率为4%时,临界流速为1.06 m/s,临界流速降低了25.35%。随管径和含固率的变化,粗、细颗粒临界流速的变化趋势相同;管径对粗颗粒的临界流速影响较明显,含固率对粗、细颗粒临界流速的影响相差不大;在相同的管径和含固率下,粗颗粒的临界沉积速度大于细颗粒。依据石灰石浆液临界沉积速度确定最小流量,开发宽负荷补水供浆工艺,并且设计低负荷补水电动调节阀控制方案,实现了不同负荷下石灰石浆液实时按需调节。该切换控制逻辑已成功应用于现场,保证了石灰石浆液泵的正常运行,提高了设备的稳定性和安全性。

关键词:湿法脱硫;石灰石浆液;沉积速度;补水供浆;按需调节

0 引 言

近几年,火电行业纷纷进行超低排放改造[1-2]。脱硫系统的大功率耗能设备多,湿法脱硫系统用电占火力发电厂用电的20%左右,提高了供电煤耗,增加了火电厂运行成本;另一方面,为满足严格的排放标准,脱硫系统石灰石浆液泵等耗能设备保持额定功率运行,不能根据烟气中含硫氧化物的含量实时调整,出口烟气SO2含量远低于排放标准,造成能耗浪费;同时,面对新的能源供应格局,燃煤机组将长时间在低负荷状态下运行,脱硫系统也必须进行灵活性改造才能满足机组的运行要求[3-5]

石灰石-石膏湿法脱硫技术采用石灰石粉作为吸收剂[6]。为便于控制石灰石添加量,通常将石灰石粉和水以一定比例混合成石灰石浆液,并通过石灰石浆液供应系统向脱硫塔内添加石灰石。现有的石灰石浆液供应系统一般采用变频泵的供浆方式,通过调节浆液流量来控制石灰石添加量[7]。由于石灰石浆液的质量分数约为30%,为减小石灰石浆液对输送管道的磨损和浆液沉积,需将其流速控制在1.5~3.0 m/s,相应地,石灰石添加量的安全调节范围在50%~100%[8]

为保证脱硫系统的稳定运行,当脱硫塔的SO2负荷变化时,石灰石添加量应随之实时调节[9]。彭国富等[10]以净烟气SO2为被控量,利用前馈补偿调节烟气侧和浆液侧扰动,开发了串级前馈石灰石供浆控制策略。贺心燕和李国庆[11]以机组负荷和入口SO2浓度为前馈信号,实时调控供浆流量。SO2负荷随锅炉烟气量和燃煤硫分的变化而变化,锅炉烟气量的变化幅度在40%~100%,燃煤硫分的变化幅度在50%~100%,因此SO2负荷的变化幅度在20%~100%,远高于石灰石添加量的安全调节范围。

现有的石灰石浆液供应系统采用单一的供浆泵变频调节方式,只有SO2负荷大于50%时才能实现石灰石添加量的实时调节[9]。宋涛等[12]实现了PID分段控制调节pH值的供浆实际应用,但负荷过低时需设置浆液泵最低开度并手动设定pH理想值。因此,当SO2负荷低于50%时,如果继续降低供浆泵的频率,会导致管道中浆液的沉积,危及供浆系统安全运行[13-15]。为避免管道中浆液的沉积,现有石灰石浆液供应系统采用频繁启停石灰石浆液泵的间断供浆方式,将会带来以下问题[16]:① 石灰石添加量不能再随着SO2负荷的变化而实时调节,导致脱硫系统的pH值变化幅度变大,带来SO2浓度排放超标的风险。② 石灰石浆液泵需频繁启停,降低泵的使用寿命。③ 每次石灰石浆液泵停运后,为防止浆液在管道中沉积,都需要对供浆管道系统进行冲洗,消耗大量工艺水。

近年来,国家对环境治理力度不断加大,电站燃煤锅炉烟气的SO2排放标准更是由100 mg/m3提高到了35 mg/m3,这就要求对脱硫系统的关键控制参数,包括pH、石灰石添加量等进行精准调节[17]。同时,燃煤电站的年利用小时数持续降低,脱硫系统的SO2负荷长期处于较低状态,原有石灰石浆液供应系统的经济性和安全性下降[18]

为解决上述问题,笔者通过沉积速度试验,确定含固率和管径这两大指标与石灰石颗粒临界沉积速度的定量关系,进而折算为临界流量,开发出以石灰石浆液临界流量为控制指标的控制逻辑,实现供浆系统宽负荷实时调节。

1 试验方法

宽负荷调节供浆技术试验平台如图1所示。石灰石浆液由石灰石浆液泵打入到有机玻璃管道中观察流动情况,经过密度计和流量计进行测量,试验完成后排入废水处理池。中间的取样口可对石灰石浆液取样测量使用。为了适应安装不同管径的有机玻璃管段,采用不同的变径段将有机玻璃和前面公用段管道相连。

图1 宽负荷调节供浆技术试验装置

Fig.1 Experimental device for wide-load regulation pulp supply technology

试验流程如下:① 在石灰石浆液罐中配置石灰石浆液,试验中选取5种不同的石灰石浆液含固量Cv(4%、6%、8%、11%、20%);② 将变径口和有机玻璃管接入到流量计后段,有机玻璃管管径选用内径(DN)40、50、60和70 mm四种类型,有机玻璃管长1 m;③ 启动石灰石浆液泵,保证石灰石浆液流过有机玻璃管而不发生颗粒沉淀;④ 调节阀门开度逐渐降低石灰石浆液在管道内的流速,观察石灰石浆液在有机玻璃管内的流动情况;⑤ 当有机玻璃管道内出现颗粒沉淀时,记录密度计和流量计的数据ρ1Q1;⑥ 更换其他管径的有机玻璃管,重复步骤①~⑤。将记录好的数据进行处理,换算成石灰石颗粒不沉降最低流速v与含固量、管径之间的关系,拟合出石灰石颗粒不沉降最低流速v与含固量和管径的回归算式v=f(Cv,DN)。

2 结果与分析

2.1 石灰石粒径分布

使用济南微纳颗粒股份技术有限公司生产的Winner2000ZDE激光粒度分析仪对试验所用的石灰石浆液进行粒径分析。测量依据Fraunhofer衍射理论和完全的米氏光散射理论。光照射颗粒时,衍射和散射的情况与光的波长及颗粒的大小有关,因此当用单色性很好并且波长固定的激光作为光源时,就可以消除波长的影响,从而得出衍射、散射情况与颗粒粒径分布的对应关系。石灰石浆液颗粒粒径分布如图2所示,可知浆液整体粒径分布主要在10 μm,而浆液粗颗粒粒径分布主要在100 μm。浆液整体粒径分布包括外部带入的细灰杂质,浆液粗颗粒粒径分布是指纯石灰石浆液。当颗粒粒径较小(细颗粒)时,跟随性好,能与水形成均质浆体;当颗粒粒径较大(粗颗粒)时,其速度明显小于水流速度,形成颗粒与水的固液两相流。在颗粒粒径逐渐变大过程中,跟随性逐渐变差。

图2 石灰石浆液颗粒粒径分布

Fig.2 Particle size distribution of limestone slurry

2.2 沉积速度试验

2.2.1 管径的影响

为验证管径对临界流速的影响,选取粗颗粒含固率为20%的石灰石浆液在4种不同管径内进行试验,试验结果如图3所示。

图3 粗颗粒临界流速与管径的关系

Fig.3 Relationship between critical velocity of coarse particles and pipe diameter

由图3可知,随着管径的增加,临界流速也呈增大的趋势。临界流速从管内径为40 mm时的1.28 m/s增加到管内径为70 mm时的1.76 m/s,增加了近40%。关于管道直径对临界流速的影响,学者们进行了不同的研究[19-21]

杜兰德公式中,临界流速νcD1/3,在瓦斯普(Wasp)的计算方法里,νcD1/3成正比。卡赞斯基根据大量试验数据总结出的经验公式为

(1)

其中,νc为临界流速;D为管内径;Z为悬浮指数,是颗粒沉速与紊动强度数群之比;g为重力加速度;Cw为质量浓度。公式表明,νcD1/4成正比。管道内径对临界流速的影响主要表现在2方面[19]。一方面管道直径越大,其绝对粗糙度越小,水力半径越大,紊动作用越强,临界流速减小;另一方面,管径加大,固体颗粒从管底悬浮起来难度更大,更难维持原有的垂线浓度梯度,需要更大的输送速度。

2.2.2 含固率的影响

为验证含固率对临界流速的影响,选取的管内径为50 mm并在4种不同石灰石浆液含固率的工况下进行试验,试验结果如图4所示。

图4 粗颗粒临界流速与含固率的关系

Fig.4 Relationship between the critical velocity of coarse particles and solid content

由图4可知,随着含固率的降低,临界流速也呈下降趋势。临界流速从含固率为20%时的1.42 m/s降低到含固率为4%时的1.06 m/s。汪东等[22-23]研究得出,临界流速νc与含固率Cv的关系为

(2)

式中,m为正数,在0~0.36,大部分在1/3左右。

2.2.3 粗细颗粒临界流速对比

浆液沉积试验测试了浆液临界沉积流速与不同内径和不同含固率的对应关系,得出了粗颗粒和细颗粒下的对应关系,如图5所示。

图5 粗细颗粒临界速度与不同内径及含固率的关系

Fig.5 Relationship between the critical velocity of coarse and fine particles with different inner diameters and solid content

临界沉积流速为当固体颗粒从悬浮状态下流速由大变小,直至开始滚动、滑动和沉积形成固定床面时的最大流速。结果发现,随着管径的增大,临界流速增大。随着含固率的降低,临界流速降低。前人研究发现[24]:固液两相流的浆体输送管道中,浆体浓度对临界流速的影响具有双重作用。一种情况下,单纯提高固体浓度时,会大大增加浆体的黏性,紊动对颗粒的支持力减小,从侧面论证了提高浓度可以降低临界速度;另一种情况,在管径等试验条件一定时,提高固体输送浓度抑制紊动强度,支持颗粒的力减弱,此时增大流速才能维持紊动强度。因此提高固体输送浓度能同时减小临界速度和增大临界速度,导致复杂现象的出现。根据浓度与临界流速关系公式可知:对于某具体管径,在一般情况下,如果浆体的输送管道临界沉积流速与浆体浓度呈正相关关系,则浆体将处在低浓度范围;相反,当浆体浓度超出一定范围时,呈负相关关系,容易形成层流状态,使阻力快速增大。

基于不同管径和含固率下的石灰石浆液沉积试验,根据试验结果建立石灰石颗粒沉降特性模型。通过SPSS软件的二元线性回归得出了石灰石浆液临界沉积速度与含固率、管径的回归算式,如式(3)和式(4)所示:

对细颗粒:

νc=f(Cv,DN)=2.362Cv 0.006DN 0.409,

(3)

对粗颗粒:

νc=f(Cv,DN)=2.006Cv 0.018DN 0.132。

(4)

再根据拟合得出的临界流速,折算成临界沉积流量X0,为后期的控制逻辑改造作准备。

2.3 补水工艺及控制方案

吸收塔浆液值控制系统是石灰石湿法脱硫工艺中最复杂的控制系统,其控制目的主要是通过将浆液值控制在合理的范围内以保证预期的脱硫效率和较高的石灰石利用率[25]。影响浆液pH值的主要因素包括烟气流量、入口SO2浓度、石灰石浆液流量以及浓度等。在原控制逻辑中,通过调节加入脱硫吸收塔反应罐中石灰石浆液的流量控制浆液pH值。原控制方案思路为高于50%负荷,石灰石浆液泵变频运行;低于50%负荷,停石灰石浆液泵。灵活性发电背景下,脱硫系统可能频繁波动,这种控制方案对泵的寿命极其不利。

根据前期试验结果,对原有的工艺流程和控制方案进行了改造。在石灰石浆液箱和石灰石浆液泵之间加入一路工艺水,不同负荷下根据石灰石浆液pH值来调节补充水量或石灰石添加量,改造后系统流程和控制逻辑分别如图6和7所示。

图6 补充工艺水系统流程

Fig.6 Flow chart of supplementary process water system

工艺水从石灰石浆液泵冲洗水母管上开管口引出,依次经过手动截止阀、电动调节阀、电动截止阀、手动蝶阀,最后接入石灰石浆液泵入口管。电动调节阀作为水量自动控制的执行机构。后期可以通过电动调节阀的不同开度,控制进入系统的工艺水,保证宽负荷下石灰石浆液泵始终在合适的流量下工作,确保泵的安全运行。

由图7可知,负荷下降,石灰石浆液量计算值低于临界沉积流量值X0(前期试验已经得出)时,执行机构从石灰石浆液泵切换成工艺水系统电动调节阀,石灰石浆液泵锁定频率运行,电动截止阀打开,电动调节阀进行工艺水的调节,通过密度计和流量计生成的石灰石实际添加量与计算值进行比较,差值经过转化后控制电动调节阀进行控制;负荷回升时,石灰石量计算值高于110%X0,则执行机构从工艺水系统电动调节阀切换成石灰石浆液泵,石灰石浆液泵变频率运行,电动截止阀关闭,电动调节阀关闭。改造后的控制方案已经成功在现场实施。在运行过程中,脱硫系统运行参数稳定,pH、浆液密度、石膏品质、脱硫效率稳定。本供浆系统的优化,确保了低负荷下供浆泵的稳定运行,提高了设备的稳定性和安全性。

图7 宽负荷供浆控制逻辑

Fig.7 Control logic of wide-load regulation pulp supply

3 结 论

1)石灰石浆液临界沉积速度的影响因素主要为管道内径、浆液含固率和石灰石粒径大小。随着管径的增大,临界沉积速度增大;随着含固率的增加,临界沉积速度增大;同工况下,粗颗粒的临界沉积速度要大于细颗粒。

2)基于试验结果得出了石灰石浆液临界沉积速度与含固率、管径的回归算式。

3)基于石灰石浆液临界沉积速度,提出了宽负荷补水供浆工艺。并且开发了低负荷阶段补充水电动调节阀控制石灰石浆液逻辑,结合高负荷下石灰石浆液泵控制pH的控制逻辑,实现了全负荷石灰石浆液的调节控制,该逻辑成功应用于现场,保证了石灰石浆液泵的正常运行。

参考文献(References):

[1] 程元.燃煤电厂超低排放改造经济性研究[J].中国资源综合利用,2019,37(12):101-105,140.

CHENG Yuan.Research on economy about super-clean emission rebuilds of coalfired power plants[J].China Resources Comprehensive Utilization,2019,37(12):101-105,140

[2] 尹立平,莫子孟,张静怡,等.燃煤电厂超超低排放技术改造实践[J].电力科技与环保,2019,35(6):15-18.

YIN Liping,MO Zimeng,ZHANG Jingyi,et al.Practice of ultra-ultra-low emission technical renovation of coal-fired power plants[J].Electric Power Technology and Environmental Protection,2019,35(6):15-18.

[3] 高沛荣,何未雨,王晓乾,等.脱硫浆液循环系统灵活性改造及其调节性能试验[J].热力发电,2019,48(12):98-104.

GAO Peirong,HE Weiyu,WANG Xiaoqian,et al.Flexibility transformation of desulfurization slurry circulating system and its adjustment performance test[J].Thermal Power Generation,2019,48(12):98-104.

[4] 刘刚.火电机组灵活性改造技术路线研究[J].电站系统工程,2018,34(1):12-15.

LIU Gang.Analysis on technical route of flexible transformation of thermal power units[J].Power System Engineering,2018,34(1):12-15.

[5] 苏鹏,王文君,杨光,等.提升火电机组灵活性改造技术方案研究[J].中国电力,2018,51(5):87-94.

SU Peng,WANG Wenjun,YANG Guang,et al.Research on technical schemes for improving the flexibility of thermal power units[J].Electric Power,2018,51(5):87-94.

[6] 韩松.火电领域石灰石湿法脱硫技术的应用进程研究[J].中国环保产业,2020(1):33-36.

HAN Song.Progress research on application of limestone wet desulfurization technology in power plant field[J].China Environmental Protection Industry,2020(1):33-36.

[7] 赵洪振.大型CFB锅炉石灰石添加系统优化方案[J].科技创新导报,2016,13(26):50-51.

ZHAO Hongzhen.Optimization scheme of limestone adding system for large CFB boiler[J].Science and Technology Innovation Herald,2016,13(26):50-51.

[8] 胡宏兴,蒋善行,缪昕芳.燃煤电厂烟气脱硫浆液管道的设计[J].能源工程,2009(5):30-35.

HU Hongxing,JIANG Shanxing,MIU Xinfang.FGD slurry piping design for coal-fired power plant[J].Energy Engineering,2009(5):30-35.

[9] 张启亚,丁强强.湿法脱硫供浆系统自动调节的优化[J].设备管理与维修,2015(10):71-72.

ZHANG Qiya,DING Qiangqiang,Optimization of automatic adjustment of wet desulphurization slurry supply system[J].Plant Maintenance Engineering,2015(10):71-72.

[10] 彭国富,曹顺安,杜家芝,等.湿法烟气脱硫石灰石供浆泵控制优化研究[J].工业仪表与自动化装置,2019(3):8-12.

PENG Guofu,CAO Shun′an,DU Jiazhi,et al.Research on control optimization of limestone slurry pump for wet flue gas desulfurization[J].Industrial Instrumentation & Automation,2019(3):8-12.

[11] 贺心燕,李国庆.燃煤电厂脱硫供浆控制系统研究[J].真空科学与技术学报,2019,39(8):732-735.

HE Xinyan,LI Guoqing.Design and test of desulfurization control unit of slurry for coal-fired power plant:An experimental study[J].Chinese Journal of Vacuum Science and Technology,2019,39(8):732-735.

[12] 宋涛,吴周晶,邱寅祺.超超临界机组脱硫系统优化[J].锅炉技术,2015,46(S1):62-65.

SONG Tao,WU Zhoujing,QIU Yinqi.The optimizes of desulfurization for ultra-supercritical unit[J].Boiler Technology,2015,46(S1):62-65.

[13] 赵宇,禾志强.湿法烟气脱硫系统中的供浆系统供浆量偏大原因分析[J].内蒙古电力技术,2011,29(5):114-115.

ZHAO Yu,HE Zhiqiang.Cause analysis to large quantity of slurry delivery system in wet flue gas desulphurization system[J].Inner Mongolia Electric Power,2011,29(5):114-115.

[14] 苏辉平.石灰石浆液细度对脱硫系统的影响[J].上海节能,2018(1):53-55.

SU Huiping.Fineness of limestone slurry impact on desulphurization system[J].Shanghai Energy Conservation,2018(1):53-55.

[15] 何伟,危凤鑫,邓保建.火电厂湿法脱硫石灰石制浆系统优化改造[J].内蒙古电力技术,2016,34(2):53-55.

HE Wei,WEI Fengxin,DENG Baojian.Optimization and transformation on wet desulfurization limestone slurry system in thermal power plant[J].Inner Mongolia Electric Power,2016,34(2):53-55.

[16] 毛莉.湿法烟气脱硫工程浆液泵设计选型须注意的问题[J].科技传播,2012,4(20):164,156.

MAO Li.Issues needing attention in design and selection of slurry pump in wet flue gas desulfurization project[J].Public Communication of Science & Technology,2012,4(20):164,156.

[17] 张强,马强.浅谈石灰石/石膏湿法脱硫系统的关键控制参数及其测量方法[J].科技风,2015(24):82-83.

ZHANG Qiang,MA Qiang.Talking about the key control parameters and measurement methods of limestone/gypsum wet desulfurization system[J].Technology Wind,2015(24):82-83.

[18] 张建龙,赵朝阳.超低排放背景下的低浓度颗粒物检测方法及应用[J].环境与发展,2017,29(7):92-93.

ZHANG Jianlong,ZHAO Chaoyang.Detection method and application of low concentration particulate matter in ultra-low emission background[J].Environment and Development,2017,29(7):92-93.

[19] 汪东,许振良,孟庆华.浆体管道输送临界流速的影响因素及计算分析[J].管道技术与设备,2004(6):1-2.

WANG Dong,XU Zhenliang,MENG Qinghua.Effect factors and calculating analysis of critical flow velocity in slurry pipeline transportation[J].Pipeline Technique and Equipment,2004(6):1-2.

[20] 汪明先.非均质流浆体管道临界淤积流速研究[D].昆明:昆明理工大学,2017.

[21] 费祥俊.浆体管道的不淤流速研究[J].煤炭学报,1997(5):86-90.

FEI Xiangjun.Study on the non-silt flow velocity of slurry pipeline[J].Journal of China Coal Society,1997(5):86-90.

[22] 汪东.沉降性浆体水平管道临界流速的研究[D].阜新:辽宁工程技术大学,2004.

[23] 邱灏,曹斌,夏建新.粗颗粒物料管道水力输送不淤临界流速计算[J].水利水运工程学报,2016(6):103-108.

QIU Hao,CAO Bin,XIA Jianxin.Non-silting critical velocity calculation of coarse-grained materials in hydraulic pipeline[J].Hydro-Science and Engineering,2016(6):103-108.

[24] 楼开鹏.浓度对水平管道沉降性浆体临界流速的影响[D].阜新:辽宁工程技术大学,2008.

[25] 杨泽坤.火电厂湿法烟气脱硫控制系统的研究与应用[D].石家庄:河北科技大学,2016.

Optimization of wet desulfurization limestone feeding system based on critical deposition rate

GU Xiaobing1,NING Xiang1,MENG Lei1,SHI Hao2,XIAO Haiping2

(1.Datang Environment Industry Group Co.,Ltd.,Beijing 100097,China;2.School of Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China)

Abstract:During the low-load operation of the wet desulfurization system,the limestone slurry pump is frequently started,which seriously endangers the equipment safety.The minimum non-deposition velocity experiment was conducted to study the critical deposition velocity of limestone slurry,and the slurry supply system was optimized accordingly.The results show that the critical flow velocity gradually increases with the pipe diameter increasing.The critical flow velocity increases from 1.28 m/s at a pipe diameter of 40 mm to 1.76 m/s at a pipe diameter of 70 mm which increases by 37.50%.The critical flow velocity gradually decreases with the decrease of solid content.The critical velocity decreases from 1.42 m/s at a solid content of 20% to 1.06 m/s at a solid content of 4% which decreases by 25.35%.With the change of pipe diameter and solid content,the trend of critical velocity of coarse and fine particles is consistent.The effect of pipe diameter on coarse particles is more obvious,and the effect of solid content on coarse and fine particles is similar.Under the same pipe diameter and solid content,the critical deposition velocity of coarse particles is higher than that of fine particles.The minimum flow is determined according to the critical deposition velocity of limestone slurry and thus wide-load water supply process is developed accordingly.And a low-load water-supply electric regulating valve control scheme is designed to achieve real-time regulation of limestone slurry under different loads.The switching control logic has been successfully applied to engineering to ensure the normal operation of the limestone slurry pump and improve the stability and safety of equipment.

Key words:wet desulfurization;limestone slurry;deposition velocity;water supply process,real-time reculation

中图分类号:X701.3

文献标志码:A

文章编号:1006-6772(2021)06-0225-06

移动阅读

收稿日期:2020-08-21;

责任编辑:常明然

DOI:10.13226/j.issn.1006-6772.20082101

基金项目:国家重点研发计划资助项目(2018YFB0604301)

作者简介:谷小兵(1976—),男,河南临颍人,高级工程师,从事环保技术开发工作。E-mail:dtguxiaobing@163.com

引用格式:谷小兵,宁翔,孟磊,等.基于临界沉积速度的湿法脱硫石灰石供浆系统优化[J].洁净煤技术,2021,27(6):225-230.

GU Xiaobing,NING Xiang,MENG Lei,et al.Optimization of wet desulfurization limestone feeding system based on critical deposition rate[J].Clean Coal Technology,2021,27(6):225-230.

洁净煤技术
《洁净煤技术》(月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 1494文章总数
  • 168984访问次数
  • 17篇 最新文章
  • 编辑部专区

    联系我们