欢迎您阅读、引用和转发!
当前位置:首页 > 第12期 > 未建模动态补偿驱动的重介质选煤自适应控制

未建模动态补偿驱动的重介质选煤自适应控制

李伟涛1,苟晓东2

(1.国家能源集团乌海能源有限责任公司, 内蒙古自治区 乌海 016000;2.国能智深控制技术有限公司,北京 102200)

摘 要:重介质选煤过程干扰多、工况动态变化复杂,传统的PID控制对灰分的跟踪控制效果差,无法满足生产需求,迫切需要更先进、更智能的控制方法来改善灰分跟踪控制性能,更好地实现节能降耗。分析了重介质选煤过程的工艺流程及重介质选煤灰分控制特性,针对重介质选煤过程的强非线性和复杂的动态特性,利用低阶线性模型和高阶未建模动态项的组合模型描述重介质选煤过程灰分控制系统的模型。利用投影算法和自适应模糊系统(Adaptive Network-based Fuzzy Inference System, ANFIS)交替辨识线性模型的参数和未建模动态项,设计了一种未建模动态补偿驱动的重介质选煤自适应控制系统,抵消了未建模动态对闭环系统稳定性产生的影响。通过重介质选煤试验对比未建模动态补偿驱动的重介质选煤自适应控制与线性自适应控制的控制效果,结果表明:未建模动态的补偿的重介质选煤过程的灰分跟踪控制的响应更快,其平均输出误差绝对值为0.316 5%,较线性自适应控制降低13.67%,具有更好的稳态性能,验证了所提的灰分控制系统模型估计算法和自适应控制方法的有效性。

关键词:未建模动态;自适应控制;重介质选煤;交替辨识

0 引 言

灰分是重介质选煤过程中重要的质量评价指标之一[1-2],灰分是煤炭燃烧后残余物的占比。在原煤进料速率动态变化的工况下,产出的精煤灰分通常处于不稳定状态,应根据调节给水阀门的开度改变重介质液的密度以控制煤炭的灰分[3-5]。随智能工厂和自动化技术推广,原煤进料速率和给水阀门开度通常在监控层上进行自动控制[6-7],有利于实现先进的智能控制算法[8]

目前重介质选煤的灰分跟踪控制中PID控制仍占主导地位,其算法结构简单。但重介质选煤是一个液固多相共存的连续化复杂物质转化过程[9],干扰多、工况动态变化[10],具有不确定性,在重介质选煤过程中采用传统的PID控制方法往往由于无法对其过程准确感知,对灰分的跟踪控制效果差,无法满足生产需求。随着现代工业的发展,迫切要求更先进、更智能的控制方法,通过不断监测重介质选煤过程自适应调整控制器参数,改善灰分跟踪控制性能[11]

众多学者致力于工业过程建模,为重介质选煤过程的监测提供了理论基础,郝继飞等[12]分析重悬浮液密度控制系统的数学模型,并进行了计算机仿真研究,提出了变参数调节器的适应型控制算法,改善了控制系统响应时间和振荡现象。赵春祥[13]建立了三产品重介质旋流器选煤工艺过程控制系统数学模型,并提出了运用自校正控制原理设计控制系统的方案。孟凡芹等[14]提出了双模糊控制器理论,将密度和液位采用不同的模糊控制器进行独立控制。赵勇[15]以参数在线自适应调整为研究对象,利用增益在线自适应调整设计单神经元PID控制器。

上述PID控制虽通过不断监测生产过程状态,自适应调整PID控制器参数,但忽略了其动态特性,易导致控制系统振荡且影响稳态性能[16-17]。将重介质选煤过程控制中的动态特性变化用未建模动态来描述,通过设计消除未建模动态补偿信号叠加于基于线性模型设计反馈控制器,采用一步超前最优控制策略,提出了基于投影算法和ANFIS交替辨识的未建模动态补偿驱动重介质选煤自适应控制算法。由于在实际重介质选煤过程中灰分检测周期长且不易检测,利用重介质选煤过程的参数实现对灰分控制的软测量[18-20],试验结果与传统线性自适应控制的灰分跟踪控制,验证了所提算法的有效性。

1 控制问题描述

1.1 重介质选煤过程描述

重介质选煤遵循Archimedes(阿基米德)原理[20],在重介质液中分离杂质和精煤。重介分选液通常采用密度介于矸石和精煤之间的介质[21]。在重介质选煤的工艺中,煤炭从井下开采出后经人工筛选,去除可见矸石和杂物,得到不经任何加工、符合验收标准的原煤。再将预筛选和脱泥后的块煤放入重介质浅槽分选机的槽体,矸石由于水流离心力的作用下沉到刮板被排出,而块精煤通过溢流堰滤出。排出的矸石经矸石脱介筛后作为第1段回流介质流进入合格介质桶回收利用;排出的精煤经固定筛后作为合格的回流介质被回收利用。矸石和块精煤经高压喷水后的二段回收介质流经管道到稀介桶中,经过稀介磁选机浓缩后进入合介桶[22]。由此可以分选出块精煤和矸石。工艺流程如图1所示。

图1 典型重介分选原则流程
Fig.1 Flow chart of typical heavy medium separation principle

灰分作为评价煤炭成色的标准,当煤炭灰分越高时,利用率越低,煤炭成色越差;当煤炭灰分越低时,利用率越高,煤炭成色越好。相关资料显示,原煤灰分在20%~50%,杂质较多;精煤视煤种与用途,其灰分在5%~20%。为生产灰分合格的精煤,在重介质选煤工艺过程中设灰分测量,大部分是人工检测,复杂且不便,而灰分又是影响分选效果的关键因素,其直接影响煤炭分选质量,故利用重介质选煤中的可测参数建立灰分的软测量模型[20],构建了灰分控制的反馈闭环回路,以下对重介质选煤过程的动态模型进行辨识。

1.2 重介质选煤过程动态模型辨识

针对重介质选煤过程具有强非线性和复杂的动态特性,利用低阶线性模型和高阶未建模动态的组合模型[16-17]描述重介质选煤过程的动态模型:

A(z-1)y(k 1)=B(z-1)u(k) v(k)。

(1)

其中,A(z-1)、B(z-1)为初始参数;y为系统输出;k为当前时刻;u为系统输入;v为高阶非线性项,表示未建模状态。低阶线性模型为非线性机理模型工作点附近的线性近似模型,其机理模型取于文献[22]的质量平衡模型,高阶未建模动态项为重介质选煤过程中的复杂动态特性及非线性特性总和。

由于重介质选煤过程中原煤性质和生产设备缓慢变化的影响,实际中模型参数随时间变化。因此,对未知参数A(z-1)和B(z-1)和未建模动态项v(k)进行在线识别和更新非常必要。未建模动态补偿的实际值的计算步骤是:首先在工作点附近将重介质选煤灰分过程描述为一类由低阶线性模型和高阶未建模动态项组合的非线性模型;其次,利用投影算法辨识低阶线性模型参数;最后,将非线性系统输出与低阶线性模型输出作差,可得到未建模动态项参考的实际值。定义瞬时线性估计模型:

ϑ

(2)

其中,ϑ为线性模型参数(1)的估计值向量;X(k)=[y(k), y(k-1),u(k),u(k-1)]表示由重介质选煤灰分控制系统的输入和输出组成的向量。利用k时刻有死区的投影算法,得到:

(3)

(4)

式中,e(k)为估计误差。

为未建模动态项。采用自适应模糊系统ANFIS估计未建模动态项的过程如图2所示,系统的输入量和输出量u(k),…,u(k-n 1),y(k),…,y(k-n 1)经映射α转化为并以此作为ANFIS的输入向量, 本文采用T-S型[18] ANFIS来估计v(k),其中,T-S型模糊系统可由n条模糊If-then规则组成的集合表示。

图2 基于ANFIS的未建模动态项估计
Fig.2 Unmodeled dynamic term estimation based on ANFIS

2 重介质选煤灰分的未建模动态驱动控制方法

由于给煤速率动态变化,故重介质选煤过程中的动态特性将影响闭环系统的性能。忽略给煤速率的动态特性容易引起闭环系统的振荡和产生误差。针对重介质选煤过程,提出一种基于未建模动态驱动的重介质选煤灰分PI控制方法,控制系统的结构如图3所示。

图3 未建模动态补偿的自适应控制系统结构
Fig.3 Adaptive control system structure without modeling dynamic compensation

利用重介质选煤过程的动态模型在工作点附近的Taylor展开的线性模型设计线性PI控制器:

(5)

其中,kPkI为PI控制器的比例、积分系数;e(k)为跟踪误差,定义为

e(k)=ysp(k)-y(k)。

(6)

其中,ysp(k)为理想输出,由式(5)利用单位迟滞算子z-1且加入未建模动态项的补偿K(z-1)v(k)抵消闭环控制系统中未知动态特性的影响可以推算出:

H(z-1)u1(k)=G(z-1)[ysp(k)-y(k)]-
K(z-1)v(k)。

(7)

其中,H(z-1)=1-z-1,G(z-1)=g0 g1z-1,g0=kP kI,g1=-kP;K(z-1)为z-1的多项式。定义广义理想输出y*(k 1):

(8)

定义广义输入误差为eg(k 1):

eg(k 1)=Φ(k 1)-y*(k 1)=

(9)

为使广义输入误差eg(k 1)为0,以求得极小的最优控制律,引入一步超前最优控制策略的性能指标:

(10)

其中,P(z-1)、Q(z-1)、K1(z-1)均为关于时延算子z-1的加权多项式,为求取该最优控制律,引入如下Diophantine方程:

(11)

由式式(7)和式(11)可得:

(12)

其中,

(13)

将式(12)代入式(11),使J最小可得增强动态补偿的非线性控制律为

(14)

其中,由Diophantine方程(11)唯一确定。由式(7)和式(14)可得,图3中PI控制器参数的加权多项式有如下对应关系:

(15)

(16)

(17)

首先离线选择P(z-1)和Q(z-1)使得下式成立:

|P(z-1)B(z-1) Q(z-1)A(z-1)|≠0,|z|>1。

(18)

由选定的P(z-1),通过式(11)和式(16)可以获得G(z-1),可得PI控制器参数如下:

KP=g1,

(19)

KI=g0-g1

(20)

为消除未建模动态v(k)对闭环系统的影响,通过选定的Q(z-1),由式(13)、式(15)以及式(17)可知选择应满足:

(21)

因此,PI控制器式(5)中的K(z-1)为:

(22)

3 稳定性与收敛性

引理1: 投影辨识算法(2)~(4)的性质如下所示。

ϑϑ‖,

(23)

(24)

带死区的投影辨识算法(2)~(4)的性质如下所示。

ϑϑ‖,

(25)

(26)

引理1的证明类似于文献[19]中的证明。因此有界。

引理2:表示基于辨识的线性模型和对A(z-1)和B(z-1)的估计基于模型的线性自适应PI控制器的参数为将投影算法(2)~(4)和线性控制器(7)代入系统(1)得到重介质选煤控制系统的输入输出动态方程:

(27)

其中,

以上都省略了多项式z-1

证明:式(4)可表示为

(28)

式(7)乘以加上式(28)乘以H可得:



(29)

式(7)乘以加上(28)乘以可得:

(30)

定理1:当采用未建模动态补偿驱动的自适应控制方法对系统(20)进行控制时,闭环系统的输入和输出有界。然后存在任意小的ε满足的正数:

(31)

证明:首先,使用线性控制器时,闭环系统的输入和输出有界。由式(23)可得,以以及有界。此外,可知系统渐近稳定。因此,有正常数c1,c2,c3,c4使:

(32)

(33)

结合(27)以及控制系统输入输出动态方程的证明过程。因此,当k→∞时,选择非线性控制器(7)作为系统输入。跟踪误差可由(34)得出:

(34)


(35)

由于已知以及 因此,存在一个任意小的正数ε使

(36)

4 重介质选煤过程试验

在重介质选煤的工艺流程中灰分的测量复杂且不便,而灰分又是影响分选效果的关键性因素,其直接影响煤炭分选质量。故采用文献[20]的方法建立灰分软测量模型,验证所提控制方法对灰分的跟踪控制,针对重介质选煤过程中灰分设定值和给煤量同时动态变化时的工况,将所提方法与传统基于交替辨识模型的自适应控制方法以及基于线性模型的控制方法进行对比,试验结果验证了本文所提方法的有效性和优越性。重介质选煤的灰分控制模型参数参照文献[22],见表1。

表1 重介质选煤基础回路过程动态模型参数
Table 1 Process dynamic model parameters of heavy medium coal preparation base circuit

针对重介质选煤过程中灰分设定值变化和给煤量动态变化2种工况同时作用时,将所提方法与传统的基于线性模型的自适应控制方法进行对比。在本试验中,初始时刻设定为灰分25%的原煤,第1 200个时间序列将设定值更改为10%,第2 400个时间序列将设定值更改为5%,给煤量为10 kg/s,同时设定[-0.5,0.5]的随机动态变化量。基于未建模动态补偿的重介质选煤自适应控制的输出和误差曲线如图4所示。基于ANFIS辨识的未建模动态误差如图5所示。将初始的控制信号重介质悬浮液的密度u(0)=1 530 kg/m3。根据文献[22]质量平衡模型建立机理模型,在其工作点进行线性化处理即可得到输入输出模型(1)的初始参数:

图4 未建模动态驱动的自适应控制的输出和误差曲线
Fig.4 Output and error curves of adaptive control without modeling dynamic drive

图5 基于ANFIS辨识的重介质选煤动态模型未建模动态估计误差
Fig.5 Unmodeled dynamic estimation error of heavy medium coal selection dynamic model based on ANFIS identification

线性自适应控制的输出和误差曲线如图6所示,基于线性模型的重介质选煤动态模型未建模动态估计误差,如图7所示,未建模动态的补偿的重介质选煤过程的灰分跟踪控制响应更快,其平均输出误差绝对值为0.316 5%,是线性自适应控制平均输出误差绝对值的13.67%,如图4和6所示,可见其稳态性能更好。由图5和7可知,利用投影算法和ANFIS交替辨识算法的模型估计精度明显好于线性近似化模型的估计精度。自适应控制的输出效果依赖于模型辨识的精度,由于线性近似化模型丢失了重介质选煤灰分控制过程中的动态特性,本研究所提方法利用ANFIS估计非线性系统中的未建模动态项并在控制系统中设计补偿器。未建模动态项的补偿抵消了闭环系统中由于动态变化导致的影响。

图6 线性自适应控制的输出和误差曲线
Fig.6 Output and error curves of linear adaptive control

图7 基于线性模型的重介质选煤动态模型未建模动态估计误差
Fig.7 Unmodeled dynamic estimation error of heavy medium coal preparation dynamic model based on linear model

5 结 论

1)针对重介质选煤过程灰分控制系统的强非线性和未知动态特性,将低阶线性模型和高阶未建模动态项的组合模型和未建模动态驱动的自适应控制系统相结合,采用投影算法辨识低阶线性模型,未建模动态项的估计量由自适应模糊系统(Adaptive Network-based Fuzzy Inference System, ANFIS)辨识。估计所得的模型结合一步超前最优控制策略计算最优控制律。

2)通过重介质选煤灰分控制试验,将未建模动态驱动的自适应控制方法与传统基于工作点附近线性化模型的自适应控制方法对比,验证了笔者所提出的未建模动态驱动的重介质选煤自适应控制方法通过未建模动态补偿抵消了闭环系统中的动态特性影响。

3)与线性自适应控制方法相比,本文所提出的未建模动态驱动的重介质选煤自适应控制方法对灰分跟踪控制的响应更快,误差更小,其平均输出误差绝对值为0.316 5%,是线性自适应控制的13.67%。

参考文献(References):

[1] 杨晓鸿,刘亿,郭崇涛,等.临涣选煤厂重介质选煤灰分闭环控制技术改造[J].选煤技术,2020(3):83-86.

YANG Xiaohong, LIU Yi, GUO Chongtao, et al. Transformation of closed-loop control technology for ash content in heavy medium coal preparation at Linhuan coal preparation plant [J]. Coal Preparation Technology, 2020 (3): 83-86.

[2] 王明财.范各庄选煤厂浮选系统技术改造探讨[J].煤炭工程,2012(S1):42-44,47.

WANG Mingcai. Discussion on technical transformation of flotation system in Fangezhuang coal preparation plant [J]. Coal Engineering, 2012 (S1): 42-44,47.

[3] 许铁卫,原野,王纪成.重介质选煤厂介耗控制途径探讨[J].煤炭工程,2019,51(2):66-69.

XU Tiewei, YUAN Ye, WANG Jicheng. Exploration of medium consumption control methods in heavy medium coal preparation plants [J]. Coal Engineering, 2019,51 (2): 66-69.

[4] 汪进雅,张孝松,李强,等.霍尔辛赫选煤厂重介质消耗控制研究与实践[J].煤炭工程,2015,47(8):76-79.

WANG Jinya, ZHANG Xiaosong, LI Qiang, et al. Research and practice on heavy medium consumption control at holsinghe coal preparation plant [J]. Coal Engineering, 2015,47 (8): 76-79.

[5] 乔继.沙曲选煤厂工艺优化设计和布置探讨[J].煤炭工程,2015,47(12):22-24.

QIAO Ji. Discussion on process optimization design and layout of Shaqu coal preparation plant [J]. Coal Engineering, 2015,47 (12): 22-24.

[6] 张磊.信息自动化技术在选煤厂的应用探讨[J].煤炭工程,2018,50(S1):125-127.

ZHANG Lei. Discussion on the application of information automation technology in coal preparation plants [J]. Coal Engineering, 2018,50 (S1): 125-127.

[7] 郭瑞家.选煤厂煤仓通风系统自动化改造分析[J].能源与节能,2020(12):191-192.

GUO Ruijia. Analysis of automation transformation of coal preparation plant coal bunker ventilation system [J]. Energy and Energy Conservation, 2020 (12): 191-192.

[8] 李娜.洗煤厂煤炭洗选自动化控制分析[J].能源与节能,2021(3):154-155.

LI Na. Analysis of automatic control for coal washing in coal washing plants [J]. Energy and Energy Conservation, 2021 (3): 154-155.

[9] 上官志鹏. 重介质选煤悬浮液密度和黏度的协调控制[D].西安:西安科技大学,2019.

[10] 郭西进,张志强,王广胜.重介选煤中密度与液位解耦控制研究[J].煤炭技术,2017,36(1):296-298.

GUO Xijin, ZHANG Zhiqiang, WANG Guangsheng. Research on decoupling control of density and liquid level in heavy medium coal preparation [J]. Coal Technology, 2017,36 (1): 296-298.

[11] 杨晓鸿,刘亿,郭崇涛,等.临涣选煤厂重介质选煤灰分闭环控制技术改造[J].选煤技术,2020(3):83-86.

YANG Xiaohong, LIU Yi, GUO Chongtao, et al. Transformation of closed-loop control technology for ash content in heavy medium coal preparation at Linhuan coal preparation plant [J]. Coal Preparation Technology, 2020 (3): 83-86.

[12] 郝继飞, 许世范. 重介密度控制系统数学模型与适应控制方法的研究[J]. 煤矿自动化, 1995, 1(1):9.

HAO Jifei, XU Shifan. Research on mathematical model and adaptive control method of dense medium density control system [J]. Coal Mine Automation, 1995, 1 (1): 9.

[13] 赵春祥.浮选过程参考模型自适应识别系统的设计[J].选煤技术,1993(3):40-42.

ZHAO Chunxiang. Design of a flotation process reference model adaptive recognition system [J]. Coal Preparation Technology, 1993 (3): 40-42.

[14] 孟凡芹,王耀才,姜建国,等.重介工艺悬浮液密度和液位的多变量模糊控制方法研究[J].中国矿业大学学报,2005(2):123-126.

MENG Fanqin, WANG Yaocai, JIANG Jianguo, et al. Research on multivariable fuzzy control method for density and liquid level of heavy medium process suspension [J]. Journal of China University of Mining and Technology, 2005 (2): 123-126.

[15] 赵勇. 单神经元自适应PID算法在液位控制系统中的应用[J]. 西安邮电学院学报, 2009, 14(3):52-54.

ZHAO Yong. The Application of single neuron adaptive PID algorithm in liquid level control system [J]. Journal of Xi′an University of Posts and Telecommunications, 2009, 14 (3): 52-54.

[16] 杨天皓, 李健, 贾瑶,等. 虚拟未建模动态补偿驱动的双率自适应控制[J]. 自动化学报, 2018, 44(2):299-310.

YANG Tianhao, LI Jian, JIA Yao, et al. Dual rate adaptive control driven by virtual unmodeled dynamic compensation [J] . Journal of Automation, 2018, 44 (2): 299-310.

[17] 王兰豪, 贾瑶, 柴天佑. 再磨过程的泵池液位和给矿压力双速率区间控制[J]. 自动化学报, 2017(6) :121-134.

WANG Lanhao, JIA Yao, CHAI Tianyou. Dual rate interval control of pump pool liquid level and feed pressure during the regrinding process [J] . Journal of Automation, 2017 (6): 121-134.

[18] 张浩炯,余岳峰,王强.应用自适应神经模糊推理系统(ANFIS)进行建模与仿真[J].计算机仿真,2002(4):47-49.

ZHANG Haojiong, YU Yuefeng, WANG Qiang. Modeling and simulation using Adaptive Neural Fuzzy Inference System (ANFIS) [J]. Computer Simulation, 2002 (4): 47-49.

[19] 代伟, 张凌智, 褚菲,等. 重介质选煤过程模型与数据混合驱动的自适应运行反馈控制[J]. 控制理论与应用, 2020, 37(2):58-69.

DAI Wei, ZHANG Lingzhi, CHU Fei, et al. Adaptive operation feedback control driven by a hybrid model and data for heavy medium coal selection process[J]. Control Theory and Applications, 2020, 37(2): 58-69.

[20] DAI W , ZHANG L , FU J , et al. Model-data-based switching adaptive control for dense medium separation in coal beneficiation[J]. Control Engineering Practice, 2020, 98:104241.

[21] 谢广元. 选矿学[M].徐州:中国矿业大学出版社, 2016.

[22] ZHANG L, XIA X. A model predictive control for coal beneficiation dense medium cyclones[J].IFAC Proceedings Volumes, 2014,47(3): 9810-9815.

Adaptive control of heavy medium coal preparation without modeling dynamic compensation drive

LI Weitao1,GOU Xiaodong2

(1.National Energy Group Wuhai Energy Co.,Ltd.,the Nei Monggol Autonomous Region, Wuhai 016000,China;2.Guoneng Zhishen Control Technology Co.,Ltd.,Beijing 102200,China)

Abstract:The heavy medium coal preparation process is fraught with many uncertainties and disturbances, and its working conditions undergo complex dynamic changes. The traditional PID control falls short in effectively tracking and controlling ash content, which cannot meet production requirements. There is an urgent need for more advanced and intelligent control approaches to improve the performance of ash tracking and controlling, thereby facilitating improved energy conservation and consumption reduction. The technological process of heavy medium coal preparation process and the control property of coal ash content in heavy medium coal preparation process were analyzed. Aiming at the strong nonlinear and complex dynamic characteristics of heavy medium coal preparation process, a combination model of low-order linear model and high-order unmodeled dynamic term was used to describe the ash control system model of heavy medium coal preparation process. By using the projection algorithm and the adaptive fuzzy system (Adaptive Network-based Fuzzy Inference System, ANFIS) to alternately identify the parameters of the linear model and the unmodeled dynamic terms, an adaptive control system of heavy medium coal dressing driven by unmodeled dynamic compensation was designed to offset the influence of the unmodeled dynamic on the stability of the closed-loop system. Through heavy medium coal selection experiments, the control effects of unmodeled dynamic compensation driven heavy medium coal selection adaptive control and linear adaptive control were compared. The results show that the ash tracking control of the unmodeled dynamic compensation heavy medium coal selection process has a faster response, with an average output error absolute value of 0.316 5%, which is 13.67% lower than linear adaptive control, and has better steady-state performance. The study validates the effectiveness of estimation algorithm and adaptive control method of the proposed model for ash content control system.

Key words:unmodeled dynamic;adaptive control;heavy medium coal preparation;alternate identification

中图分类号:TP273

文献标志码:A

文章编号:1006-6772(2023)12-0128-08

收稿日期:2021-10-14;责任编辑:张 鑫

DOI:10.13226/j.issn.1006-6772.21101405

移动阅读

基金项目:国家自然科学基金资助项目(42030807)

作者简介:李伟涛(1984—),男,河北邢台人,工程师,硕士。E-mail:taoge.2008@163.com

引用格式:李伟涛,苟晓东.未建模动态补偿驱动的重介质选煤自适应控制[J].洁净煤技术,2023,29(12):128-135.

LI Weitao,GOU Xiaodong.Adaptive control of heavy medium coal preparation without modeling dynamic compensation drive[J].Clean Coal Technology,2023,29(12):128-135.

洁净煤技术
《洁净煤技术》(月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 1494文章总数
  • 168984访问次数
  • 17篇 最新文章
  • 编辑部专区

    联系我们