欢迎您阅读、引用和转发!
当前位置:首页 > 第2期 > 柠檬酸优化水热合成羟基磷灰石及矿井水除氟性能

柠檬酸优化水热合成羟基磷灰石及矿井水除氟性能

赵佳昕1,2,李文博2,王吉坤2

(1.煤炭科学研究总院,北京 100013;2.煤炭科学技术研究院有限公司 煤化工分院,北京 100013)

摘 要:为了提高羟基磷灰石的分散性,通过水热法合成羟基磷灰石粉体。通过添加柠檬酸提高样品的分散度、降低晶粒尺寸,从而提高在模拟水样中的除氟效率。通过单因素试验和响应面法对羟基磷灰石的水热合成工艺条件进行主要参数优化,并利用红外光谱、扫描电镜、能量色散X射线光谱、比表面积及孔隙分析和X射线衍射仪等表征了不同柠檬酸添加比例下水热合成羟基磷灰石。结果表明,柠檬酸的加入会显著影响羟基磷灰石在纳米尺度下的微观形貌。利用Box-Behnken设计的3因素3水平响应面试验确定水热法合成羟基磷灰石的最佳参数为:水热温度147 ℃、水热时间8 h、柠檬酸添加量0.5%,在最佳工艺条件下,成功得到高分散度的纳米羟基磷灰石,针对模拟水样(氟离子质量浓度为6 mg/L)除氟效率达44.6%,除氟容量为2.678 mg/g,高于同等测试条件下的市售羟基磷灰石测试值(1.437 mg/g)。吸附过程的热力学研究表明,Langmuir等温模型拟合效果要优于Freundlich模型。计算热力学参数可知,所制备的羟基磷灰石对氟离子的吸附是自发(ΔG0<0)、放热(ΔH0<0)、熵增(ΔS0>0)的过程。羟基磷灰石对氟离子的吸附符合准二级反应动力学过程。通过造粒成型及连续吸附装置对所制羟基磷灰石样品进行评价,出水氟离子质量浓度连续9 d保持在1.0 mg/L以下,该吸附剂具有良好除氟效果。

关键词:水热合成;响应面法;羟基磷灰石;柠檬酸;除氟;吸附热力学;吸附动力学

中图分类号:O799

文献标志码:A

文章编号:1006-6772(2022)02-0175-11

收稿日期:2021-10-08;

责任编辑:张 鑫

DOI:10.13226/j.issn.1006-6772.21100811

移动阅读

基金项目:煤炭科学技术研究院有限公司科技发展基金资助项目(2021CX-Ⅰ-01)

作者简介:赵佳昕(1997—),男,山西忻州人,硕士研究生。E-mail:1473892694@qq.com。

通讯作者:李文博(1971—),男,河北石家庄人,高级工程师,博士生导师,博士。E-mail:wenbo-li@126.com

引用格式:赵佳昕,李文博,王吉坤.柠檬酸优化水热合成羟基磷灰石及矿井水除氟性能[J].洁净煤技术,2022,28(2):175-185.

ZHAO Jiaxin,LI Wenbo,WANG Jikun.Synthesis of citric acid modified hydroxyapatite by hydrothermal method and its performance of defluoridation in mine water[J].Clean Coal Technology,2022,28(2):175-185.

Synthesis of citric acid modified hydroxyapatite by hydrothermal method and its performance of defluoridation in mine water

ZHAO Jiaxin1,2,LI Wenbo2,WANG Jikun2

(1.China Coal Research Institute,Beijing 100013,China;2.CCTEG China Coal Research Institute,Beijing 100013,China)

Abstract:In order to improve the dispersibility of hydroxyapatite,hydrothermal method with citric acid as chelating agent was used to prepare hydroxyapatite with improved dispersibility and citric acid was added to improve the dispersion of the sample,reduce the grain size,and adsorb fluorine ions in simulated water samples. The main parameters of hydrothermal synthesis of hydroxyapatite were optimized by single factor test and response surface method. Hydroxyapatites with different ratio of citric acid were characterized by five techniques such as:X-ray Diffraction (XRD),Fourier Transform Infrared Spectroscopy (FT-IR),Scanning Electron Microscope (SEM),Nitrogen Adsorption/Desorption Experiment and Energy Dispersive Spectrometer (EDS). The results show that the addition of citric acid will significantly affect the micro morphology of hydroxyapatite in nano scale. Box-Behnken design with three-levels and three-factors has been applied to determine the optimal parameters such as hydrothermal time (4-8 h),temperature (140-160 ℃),citric acid dosage (0.5%-1.5%) on removal of fluoride from simulated solution. The results show that the optimal conditions are 147 ℃ of hydrothermal temperature,eight hours of hydrothermal time,and 0.5% of citric acid addition. Under the best process conditions,nano hydroxyapatite with high dispersion is successfully obtained. For simulated water samples (fluorine ion concentration is 6 mg/L),the fluoride removal efficiency reaches 44.6%,The fluoride removal capacity is 2.678 mg/g,which is higher than the test value of commercially available hydroxyapatite under the same test conditions (1.437 mg/g). According to thermodynamic parameters,adsorption of fluoride is a spontaneous process(ΔG0<0) with reduced endothermic (ΔH0<0) and increased entropy (ΔS0>0).The kinetic simulation of fluoride absorption by hydroxyapatite is conformed to pseudo second-order kinetics. The prepared hydroxyapatite samples were made into particles and evaluated by continuous adsorption device. The fluoride concentration in the effluent remained below 1.0 mg/L for 9 days,which means the hydroxyapatite made in lab has a significant removal effect of fluoride.

Key words:hydrothermal synthesis;response surface methodology;hydroxyapatite;citric acid;defluorination;adsorption thermodynamics;adsorption kinetic

0 引  言

我国现阶段仍将煤炭作为主要消费能源来保障国内能源安全,预计到2050年,煤炭将仍在能源消费中占比50%以上。煤矿矿井水是煤炭工业所产生的一种具有行业特征的污染物,具有“量大面广”的特点,含氟矿井水属于特殊污染型矿井水,我国含高氟矿井水的矿区包括淮南、淮北、鹤壁、阜新、神东等,氟离子质量浓度集中在5~10 mg/L,根据GB 3838—2002《地表水环境质量标准》要求,外排含氟矿井水质量浓度不得高于1.0 mg/L。

常用的除氟手段包括:沉淀法[1]、膜分离法[2]、电化学法[3]以及吸附法等[4]。沉淀法通过投加钙盐(CaO、CaCl2、石灰石等)与水中氟离子形成沉淀达到除氟目的,但是出水氟化物质量浓度无法低于1.0 mg/L;王文静等[5]研究了在多种混凝剂强化下,混凝沉淀去除废水中氟化物的效果,结果表明持续增大药剂投加比例才能保证出水氟化物浓度在1.0~1.5 mg/L,不仅消耗大量药剂,也会对出水造成二次污染。膜分离法主要包括纳滤和反渗透2种,凭借膜组件的优异性能,可以获得氟化物质量浓度低于1.0 mg/L的出水。但是在实际应用中存在膜孔易堵塞从而缩短膜寿命,不利于在煤矿矿井水处理方面进行大规模应用。MARTYNA和KATARZYNA[6]利用胶束增强超滤技术进行地下水除氟试验,虽然吸附效率较高,但是建设成本与设备投资较高,导致在矿井水除氟方面应用较少。常见的电化学手段包括电渗析、电絮凝等,其利用直流电在阳极释放大量铝离子达到固定沉降氟化物的目的。电化学手段原理简单、操作简便,但是设备昂贵、能耗严重、后期维护复杂,制约其在煤矿矿井水除氟领域的发展。张浩等[7]采用间歇式电絮凝装置去除地下水中的氟化物,在最佳条件下去除率仅为69%,仍无法达到外排标准,且能耗较高。

相较于以上手段,吸附法在现阶段饮用水中氟化物的去除方面应用最为普遍。吸附法的优势在于除氟效率高、设备投资费用低、操作简便、维护简单等。动物骨炭、人工沸石、离子交换树脂和活性氧化铝颗粒是最常用的吸附剂。MUHAMMAD等[8]以牛骨为原料通过热处理生成骨炭来去除污水中的氟化物,虽然吸附效果较好,但出水时有异味,并溶解有部分有机物,在增加二次污染的同时也会影响出水的饮用体验。目前在煤矿矿井水方面,吸附法及相关吸附剂的研究较少。

羟基磷灰石(Hydroxyapatite,简称HAP),是钙磷灰石(Ca5(PO4)3(OH))的自然矿化物[9-10]。人工合成的羟基磷灰石颜色洁白、无臭,具有极大应用前景。针对煤矿矿井水水处理领域,由于羟基磷灰石含有的羟基可以与游离氟离子进行离子交换,生成氟磷灰石,可实现水中氟化物的去除[11],但羟基磷灰石的团聚现象在制备过程中较常见,不利于离子交换的顺利进行[12]。HUANG等[13]通过溶胶凝胶法合成具有晶体缺陷的纳米羟基磷灰石,产物需要在高温下煅烧,制备周期较长,不适合大规模应用[14]。响应面分析法(Response Surface Methodology,RSM)利用多元二次回归方程对实际数据进行拟合,借此寻求最佳工艺参数,并通过计算机图形技术软件实现函数关系的可视化[15]。响应面法相较于普通正交法的优点为可反映出多因素对试验结果的联合影响,并且可以通过直观图形反映[16]

试验选用绿色环保的有机分散剂——柠檬酸来改善羟基磷灰石的团聚现象,在提高晶体分散效果的同时,借助水热法制得纳米级别的羟基磷灰石晶体,为后续羟基磷灰石成型滤料的开发奠定基础。区别于通过借助成本极高的高比表面积材料如碳纳米管、石墨烯等来提高氟吸附容量的方法,试验从降低羟基磷灰石晶体尺寸及改善晶体团聚现象着手,既符合经济性,也避免对水体造成二次污染。将制备的羟基磷灰石粉体进行造粒成型,开展连续试验验证,为矿井水氟化物的去除提供指导。

1 试验材料和方法

1.1 试验材料

四水合硝酸钙(Ca(NO3)2·4H2O):分析纯,上海阿拉丁生化科技股份有限公司;磷酸氢二铵((NH4)2HPO4):分析纯,上海麦克林生物化学有限公司;柠檬酸:分析纯,上海麦克林生物化学有限公司;氟化钠(NaF):分析纯,上海麦克林生物化学有限公司。模拟水样:氟离子质量浓度为6 mg/L,由去离子水与氟化钠混合配置。

1.2 分析测试仪器

ZYKX-FYQ-100mL台式反应器,北京中仪科信科技有限公司;TR-113S氟化物测定仪,深圳同奥科技有限公司;Rigaku RU-200bX射线衍射仪(日本,日本理学公司);Perkin Elmer Frontier傅立叶红外光谱仪(美国,珀金埃尔默公司);ZEISS Gemini 300场发射扫描电子显微镜(德国,蔡司公司;附X射线能谱仪,能谱型号:Smart edx);Micromeritics ASAP 2460 3.01 多站扩展式表面积和孔隙率分析仪(美国,麦克仪器公司)。

1.3 试验方法

1.3.1 羟基磷灰石制备方法

以Ca(NO3)2·4H2O和(NH4)2HPO4配置前驱液进行水热合成反应。首先配置一定量的钙盐溶液(Ca2 物质的量浓度0.25 mol/L )和磷盐溶液物质的量浓度0.15 mol/L ),保持钙磷元素物质的量比为5∶3。然后取100 mL制备完毕的钙盐溶液置于强搅拌条件下,加入一定量的柠檬酸固体,等待约10 min,逐滴加入100 mL磷盐溶液。滴加完毕后,利用1 mol/L的氢氧化钠溶液将pH调节至10.0。然后继续在密封条件下搅拌1 h,最后将前驱液分装到50 mL的聚四氟乙烯内衬中进行水热反应。对反应得到的产物进行离心沉降,并用去离子水洗涤3次,在80 ℃下干燥24 h,研磨成粉末备用。

1.3.2 羟基磷灰石静态氟吸附容量的测定

称取0.1 g的羟基磷灰石置入250 mL锥形瓶中,加入6 mg/L氟离子溶液100 mL,在恒温振荡器中以一定速率振荡12 h,温度保持在25 ℃。振荡完毕,静置后用0.45 μm滤膜过滤,测量溶液中氟化物浓度。

1.3.3 吸附热力学和动力学试验

称取0.1 g羟基磷灰石置于150 mL锥形瓶中,加入100 mL不同浓度的含氟溶液(由NaF加入去离子水配置,为1、3、5、9、13 mg/L共5个氟离子浓度),在30、40、50 ℃下振荡12 h。振荡结束后静置30 min,取上清液经0.45 μm过滤后测定氟离子浓度。吸附效率(η)和吸附容量(qe)计算方法如式(1)和(2)所示:

(1)

(2)

式中,CoCe分别为吸附前后氟离子质量浓度,mg/L;V为溶液体积,L;m为羟基磷灰石的质量,g。

吸附动力学试验操作步骤:称取0.1 g羟基磷灰石置于250 mL锥形瓶,加入100、5和9 mg/L的氟离子溶液,在30 ℃下恒温振荡,每隔一段时间测定氟离子质量浓度。

2 结果与讨论

2.1 单因素试验结果

2.1.1 柠檬酸添加量对羟基磷灰石氟吸附容量的影响

柠檬酸添加量的单因素试验结果如图1所示。随着分散剂柠檬酸的加入,羟基磷灰石的吸附容量呈先升高后下降的趋势。当柠檬酸添加量为0.5%时,羟基磷灰石对模拟水样中的氟离子吸附容量最高,相较于未添加柠檬酸的羟基磷灰石,除氟能力明显提高。因此,选择最优的柠檬酸添加量为0.5%。

图1 柠檬酸添加量对羟基磷灰石吸附容量和除氟效率的影响
Fig.1 Effect of citric acid addition on hydroxyapatite
adsorption capacity and fluoride removal effect

2.1.2 水热温度对羟基磷灰石氟吸附容量的影响

水热温度影响的单因素试验结果如图2所示,当水热温度为140 ℃时,羟基磷灰石样品的吸附容量最高,而其余样品的吸附容量均在1.0 mg/g左右,说明水热温度对羟基磷灰石的氟离子吸附容量影响较高。推测原因是由于水热温度过高,产生的高温高压环境使羟基磷灰石晶体结晶度增大,且产生的晶体缺陷较少,不利于羟基磷灰石中的羟基与氟离子进行离子交换吸附[8];水热温度过低时,温度与压力条件难以满足水热体系的要求,晶体尺寸过大,同样不利于吸附氟离子。

图2 水热反应温度对羟基磷灰石吸附容量和除氟效果的影响
Fig.2 Influence of hydrothermal reaction temperature on
hydroxyapatite adsorption capacity and fluoride removal effect

2.1.3 水热时间对羟基磷灰石氟吸附容量的影响

水热时间影响的单因素试验结果如图3所示,当水热反应时间为6 h时,羟基磷灰石样品的氟离子吸附容量最高。此外,较长水热时间下生成的羟基磷灰石样品(6、8 h)要高于较短水热时间(2、4 h)下生成的羟基磷灰石样品。这可能是因为晶体成核和晶体生长均需要一定时间,虽然较长时间下生成的羟基磷灰石晶体的结晶度较高、晶体缺陷少,不适合作为吸附剂使用,但是水热反应时间太短会导致羟基磷灰石晶体生成时间不足,成品较少[17]

图3 水热反应时间对羟基磷灰石吸附容量和除氟效果的影响
Fig.3 Influence of hydrothermal reaction time on hydroxyapatite
adsorption capacity and fluoride removal effect

2.2 Box-Behnken试验结果与分析

2.2.1 模型的建立及显著性检验

基于以上单因素试验结果,以氟离子吸附容量(Y)为响应值,以水热温度(X1)、水热时间(X2)、柠檬酸添加量(X3)为考察因素,Box-Behnken试验因素与水平见表1,试验结果与分析见表2。

表1 Box-Behnken试验因素与水平

Table 1 Box-Behnken experiments factors and levels

表2 Box-Behnken试验结果与分析

Table 2 Results and analysis of Box-Behnken experiments

利用Design expert V8.0.6对表2数据进行拟合得到回归方程:

(3)

对式(3)的回归方程进行方差分析,分析结果见表3。

表3 响应面试验结果方差分析

Table 3 Variance analysis of response surface
experiments results

注:信噪比S/N=7.099。

由表3可知,所建立的模型F=4.72,说明该模型显著,由于信噪比,模型F值的可能性只有2.65%。F<0.05表示模型可靠性较高,在此情况下X1成为重要的模型项。调整决定系数为0.858 4,表明羟基磷灰石样品的氟离子吸附容量的变化有85.84%由于水热温度、水热时间以及柠檬酸的添加量;信噪比(S/N)=7.099>4,说明信号充足,该模型可以用来指导实际应用。经过方差分析,3个因素对于羟基磷灰石样品的氟离子吸附容量影响的主次顺序为X3(柠檬酸添加量)>X1(水热温度)>X2(水热时间)。其中一次项X1和二次项对结果影响显著,其余一次项、交互项和二次项则对结果影响较小。

2.2.2 响应面分析

响应面曲线及等高线如图4所示,当固定柠檬酸添加量时,随着水热温度和水热时间的增大羟基磷灰石的氟离子吸附容量均先增大后降低,但是波动范围较小,响应面弯曲程度较小,是由于影响因素不显著所致,水热温度在140~155 ℃、水热时间在4~8 h较为合理;响应面呈上凸状,表明水热温度和水热时间交互作用具有最大值,但是等高线未闭合,说明交互作用不强。当固定水热温度和水热时间2个因素之一时,响应面均呈下凹状态,说明无论是水热温度与柠檬酸添加量还是水热时间与柠檬酸添加量均存在较弱的交互作用。上述分析与表3中的显著性一致。

图4 各因素交互作用对羟基磷灰石样品的氟离子吸附容量影响的响应面曲线和等高线
Fig.4 Response surface plots and contour lines of the influence of the interaction of various
factors on the F- adsorption capacity of hydroxyapatite samples

通过对回归方程逐步回归,得到用于吸附水中氟化物的羟基磷灰石水热制备的最佳参数为水热温度146.96 ℃,水热时间8 h,柠檬酸添加量为体系质量的0.5%,此时羟基磷灰石对模拟水样中的氟离子吸附容量最大,为2.678 mg/g,与模型预测值(2.561 mg/g)较一致,说明模型较为可靠。

另外,在相同测试条件下,对比了实验室购买的市售羟基磷灰石与自制羟基磷灰石在模拟水样下的静态吸附容量,结果表明,添加柠檬酸的水热羟基磷灰石在氟化物质量浓度6 mg/L的模拟水样中吸附容量为2.678 mg/g,市售羟基磷灰石静态吸附容量为1.437 mg/g,自制羟基磷灰石除氟性能更好。

2.3 样品表征

通过上述响应面分析可知,柠檬酸的添加量对羟基磷灰石的氟离子吸附容量具有主要影响,因此以不同柠檬酸添加量所制得的羟基磷灰石作为测试对象,分别做了SEM、XRD和FT-IR表征(其中a为未添加柠檬酸的样品;b、c、d分别为添加质量分数0.5%、1.0%和1.5%的柠檬酸样品,后续在图表中不再赘述)。

2.3.1 XRD结果分析

XRD表征结果如图5所示。由图5可知,在水热温度、pH、恒温时间及反应溶液初始浓度等条件既定的情况下,添加不同质量比的柠檬酸均可得到纯度较高的羟基磷灰石产物,与PDF标准卡片对比一致。值得注意的是,为提高羟基磷灰石的除氟效果,并未对羟基磷灰石进行高温煅烧,4组样品的XRD谱图表明样品的结晶度较低。添加柠檬酸的羟基磷灰石样品的(300)晶面明显削弱,向(202)晶面转化,说明柠檬酸在羟基磷灰石的晶体发育过程中阻碍了c轴方向的生长,使其沿c轴择优生长受到抑制[18]

图5 添加不同比例柠檬酸的羟基磷灰石样品XRD谱图
Fig.5 XRD of hydroxyapatite products added
different proportions of citric acid

2.3.2 FT-IR谱图分析

4组样品的红外光谱图如图6所示,3 500 cm-1处为羟基的伸缩振动吸收峰,由于产物未煅烧,所以此处出峰明显。1 036 cm-1为磷酸根收缩振动吸收峰,而603 cm-1和566 cm-1是磷酸根变形振动吸收峰。此外位于1 041 cm-1处未劈裂的峰是磷酸根的变形振动引起的吸收峰。由红外谱图可确定产物为羟基磷灰石。通过对比4组谱图可以发现,与未添加柠檬酸的羟基磷灰石相比,3组添加了柠檬酸的羟基磷灰石红外谱图中于1 593 cm-1和1 417 cm-1 处出现了2个由于羰基伸缩振动的吸收峰。另一方面,随着柠檬酸的添加量增大,位于1 035 cm-1处与磷酸根相关的伸缩振动峰的面积减小,说明柠檬酸根取代了部分磷酸根作为阴离子与钙离子进行结合。此外,在1 400~1 500 cm-1及880 cm-1附近存在较弱的峰,图6中未添加柠檬酸的样品谱图与仇满德等[19]一致。

图6 添加不同比例柠檬酸的产物的FT-IR谱图
Fig.6 FT-IR of products added different
proportions of citric acid

2.3.3 SEM及EDS分析

4种羟基磷灰石样品的SEM表征结果如图7所示,未加入柠檬酸时,羟基磷灰石主要呈棒状形貌,且团聚现象严重,如图7(a)所示;加入柠檬酸后,羟基磷灰石晶体团聚现象得到明显改善,特别是柠檬酸添加量为0.5%时,羟基磷灰石呈较高分散度的近球状,是由于加入柠檬酸后的水热环境影响了羟基磷灰石的表面电荷分布,抑制了c轴方向的Ca-P6O24络阴离子生长基元的叠合生长,在此形貌下羟基磷灰石与氟离子接触面积大,易与氟离子发生离子交换,因而除氟效率最高[20];当柠檬酸添加量为1.0%时,团聚现象重新出现,且向层状晶体过渡,当柠檬酸添加量达1.5%时,棒状晶体团聚情况进一步加剧,出现了花瓣状形貌,是由于大量柠檬酸根离子通过静电力吸附于羟基磷灰石的(100)晶面,阻碍六方晶体的ab轴方向发育,另一方面柠檬酸与羟基磷灰石表面会发生强烈的键合作用,2者共同作用产生花瓣状形貌[21]

图7 不同柠檬酸添加量的水热羟基磷灰石样品的SEM图
Fig.7 SEM of hydrothermal hydroxyapatite samples with different citric acid additions

按照溶液中羟基磷灰石晶体生长机理来看,羟基磷灰石从过饱和溶液中的沉淀结晶包括晶核形成和晶体长大2个过程[22]。试验中,作为分散剂的柠檬酸的加入阻碍了钙源和磷源之间的正常反应,加入柠檬酸越少,对羟基磷灰石的生成反应阻碍越小,晶核生成速率越大[23];反之,如果柠檬酸用量增大,会限制成核速率,导致晶体成长速率增大,晶体团聚明显,且晶体尺寸较大,不利于对氟离子的吸附[24]。柠檬酸的加入会显著改变水热环境,影响溶液中各离子的浓度变化,势必对羟基磷灰石离子配位体的构建速度产生影响,即羟基磷灰石晶胞在abc三个方向上的生长速率。

4种柠檬酸添加量下羟基磷灰石的EDS分析结果见表4。表4显示,各样品的Ca/P比在1.74~1.84,

表4 羟基磷灰石样品中主要元素原子百分比及Ca/P
Table 4 Atomic percent of elements and Ca/P
ratios obtained by EDS

接近羟基磷灰石的化学计量比(1.67),但是属于钙盈状态,由柠檬酸根取代了部分磷酸根与钙离子进行结合所致。

2.3.4 BET结果分析

比表面积及孔隙度分析结果见表5,4组羟基磷灰石样品内优势孔结构为介孔结构,随着柠檬酸添加量从0%增加到1.5%,平均孔径从18.2 nm缩小到10.9 nm。然而,BET比表面积和平均孔体积呈先增大后减小的趋势,其中b组样品的BET比表面积最大,为68.4 m2/g,平均孔体积为0.280 cm3/g。

表5 羟基磷灰石样品的BET表征结果
Table 5 BET analysis results for hydroxyapatite samples

BET结果初步与SEM图及后续氟离子吸附试验结果相符,即加入少量的柠檬酸起良好的分散作用,提高羟基磷灰石的比表面积,进一步提高除氟效果。

4组样品的N2吸附/解吸等温线如图8所示(P/P0为绝对压力和饱和蒸汽压的比值),存在H1型滞后环,为典型的孔径分布较窄的介孔材料,整体曲线符合Ⅳ型等温线,对应出现毛细凝聚现象的多孔材料[25]

图8 4组羟基磷灰石的N2吸附/解吸等温线
Fig.8 N2 adsorption/desorption isotherms of hydroxyapatite samples

2.4 吸附热力学研究

为了评估柠檬酸辅助下水热合成的羟基磷灰石在水中对氟离子的吸附行为,利用Langmuir和Freundlich等温模型对羟基磷灰石等温吸附模拟水样中氟离子的数据进行拟合。

(4)

式中,qmax为极限吸附容量,mg/g;b为与吸附能有关的Langmuir常数,L/mg。

(5)

式中,KF为表示和吸附能力有关的Freundlich常数;n为表示和吸附推动力有关的常数。

利用2种吸附等温平衡模型对试验数据的拟合结果如图9所示。

图9 吸附热力学模型拟合
Fig.9 Fitting of adsorption thermodynamic model

当温度在30 ℃时,样品羟基磷灰石对模拟水样中的氟离子吸附效果最好,其中拟合所得参数见表6。

表6 Freundlich和Langmuir吸附模型参数
Table 6 Adsorption model parameters of Freundlich and Langmuir

通过比较调整后的决定因子R2可知,Langmuir等温模型相较于Freundlich模型的拟合效果更佳,与WEI等[26]的结论相吻合,说明制备的柠檬酸辅助下羟基磷灰石对于水中的氟离子吸附更接近于单层吸附,且在此吸附过程中,化学吸附主导吸附过程。虽然大部分的研究结论表明羟基磷灰石对溶液中氟离子的吸附数据更加契合Langmuir等温模型,但是HUANG等[27]制备的Al(OH)3-n羟基磷灰石纳米片对氟离子的吸附数据更满足Freundlich 模型,表明在其异质表面发生了多层吸附。热力学参数计算结果见表7(KD表示热力学常数)。

表7 不同温度下羟基磷灰石样品吸附氟离子热力学参数
Table 7 Thermodynamic parameters at different
temperatures during fluoride sorption on hydroxyapatite

根据表7可知,ΔG0<0,说明反应是自发进行的,且随着温度升高,ΔG0逐渐减小,说明羟基磷灰石对氟离子的吸附过程的净推动力随温度升高而逐渐增大,有利于反应的自发进行;ΔH0<0,说明吸附反应为放热反应;ΔS0>0,表明羟基磷灰石吸附水中氟离子的过程是熵增的。与WEI等[26]和AMRUTA等[28]的热力学研究结果相比,虽然羟基磷灰石吸附水中的氟离子是自发且熵驱动,但本试验中制备的羟基磷灰石的吸附反应是放热反应。此外JAVIER等[29]研究发现,其制备的羟基磷灰石复合材料在吸附水中氟离子的过程中表现出随温度降低,除氟效果增大的现象。这一现象可能归因于吸附过程中存在由静电驱动的物理吸附,在低温状态下,低物理结合能的系统更容易保存碰撞位点的氟离子,当温度升高,这部分氟离子会克服表面力而“反弹”出羟基磷灰石的表面。

2.5 吸附动力学研究

采用准一级和准二级模型对羟基磷灰石吸附水中氟离子的过程进行动力学研究:

准一级方程式为

(6)

准二级方程式为

(7)

式中,qt为在t时刻吸附剂的吸附容量,mg/g;k1为准一级动力学吸附速度常数,min-1k2为准二级动力学吸附速度常数,g/(mg·min)。

针对准一级动力学模型,通过ln(qe-qt)与t的线性拟合图可以计算出相关参数qek1;针对准二级动力学模型,通过对t/qtt进行线性拟合可以得到k2qe,此外可以根据拟合结果得到R2值,以判断拟合精度,2种模型的拟合如图10和11所示,2种拟合模型的计算所得参数见表8。从计算结果可以看出,拟合得到的准二级动力学模型曲线的相关性系数值要大于准一级动力学模型曲线的相关性系数,即羟基磷灰石样品吸附水中氟离子的过程更接近于准二级动力学模型,此外根据准二级动力学模型计算所得的吸附容量预测值qe为2.247 mg/g和3.021 mg/g,与吸附容量实测值qe,exp为2.226 mg/g和2.992 mg/g基本一致,同样证明该吸附过程更符合准二级动力学模型[30]

图10 羟基磷灰石吸附氟离子的准一级动力学线性拟合
Fig.10 Linear fitting of pseudo-first-order model of
hydroxyapatite adsorption of fluoride ion

图11 羟基磷灰石吸附氟离子的准二级动力学线性拟合
Fig.11 Linear fitting of pseudo-second-order model of
hydroxyapatite adsorption of fluoride ion

表8 羟基磷灰石吸附氟离子动力学参数
Table 8 Kinetic parameters of fluoride ion adsorption by hydroxyapatite

2.6 连续除氟试验验证

将水热合成的羟基磷灰石粉体进行滚球造粒,煅烧后得到粒径1~2 mm的羟基磷灰石颗粒,进行实际含氟矿井水除氟试验。原水水样采集自内蒙古某矿区,水质分析见表9。

表9 水质指标分析
Table 9 Analysis of water quality indicators

实验室搭建的连续除氟装置如图12所示,吸附柱由玻璃制成,柱内径为25 mm,高度600 mm,有效容积为160 cm3,填充体积为90 cm3,装填量为60 g,停留时间10 min。吸附柱内填充煅烧后的羟基磷灰石颗粒,借助蠕动泵将充分静置后的矿井水由储液箱输送至吸附柱顶部,利用出水口截止阀开合大小来控制停留时间,在进水口与出水口取样并利用氟化物测定仪检测水中氟化物浓度。连续试验2周,每天定时取样进行氟化物浓度检测,结果如图13所示。可知,除氟装置出水在前9 d满足出水要求,在第9天后超过1.0 mg/L。

图12 吸附除氟装置
Fig.12 Adsorption defluorination device

图13 连续除氟试验结果
Fig.13 Results of continuous defluorination experiment

3 结   论

1)柠檬酸作为分散剂能够有效解决羟基磷灰石的晶体团聚问题。当柠檬酸的添加量为前驱液质量的0.5%时,效果最显著。

2)柠檬酸添加量对羟基磷灰石的形貌有显著影响,这是由于柠檬酸根离子吸附到羟基磷灰石(100)晶面并取代部分磷酸根离子,晶体从(300)晶面逐渐转变为(211)晶面择优生长。随着柠檬酸的添加量增加,晶体形貌由长棒状向球状再向花瓣状转化。

3)在柠檬酸添加量为前驱液质量0.5%、水热温度为147 ℃、水热时间为8 h的条件下制备的羟基磷灰石粉体要优于市售产品,且经过单次持续2周的试验验证,具有较好的除氟效果。

参考文献(References):

[1] 马剑,马小真. 煤矿矿井水资源化及综合利用的实践思考[J]. 中国资源综合利用,2019,37(12):62-64.

MA Jian,MA Xiaozhen. Practical thinking on water resources utilization and comprehensive utilization in coal mine[J]. China Resources Comprehensive Utilization,2019,37(12):62-64.

[2] 曹庆一,任文颖,陈思瑶,等. 煤矿矿井水处理技术与利用现状[J]. 能源与环保,2020,42(3):100-104.

CAO Qingyi,REN Wenying,CHEN Siyao,et al. Coal mine water treatment technology and utilization status[J]. China Energy and Environmental Protection,2020,42(3):100-104.

[3] 孙亚军,陈歌,徐智敏,等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报,2020,45(1):304-316.

SUN Yajun,CHEN Ge,XU Zhimin,et al. Research progress of water environment,treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society,2020,45(1):304-316.

[4] 苏双青,赵焰,徐志清,等.我国煤矿矿井水氟污染现状及除氟技术研究[J].能源与环保,2020,42(11):5-10.

SU Shuangqing,ZHAO Yan,XU Zhiqing,et al. Status quo of fluoride pollution of coal mine water in China and research on fluoride removal technology[J]. China Energy and Environmental Protection,2020,42(11):5-10.

[5] 王文静,仲丽娟,黄保平,等.地表水强化混凝除氟方案[J].净水技术,2020,39(3):95-98.

WANG Wenjing,ZHONG Lijuan,HUANG Baoping,et al. Solutions of fluoride removal of surface water by enhanced coagulation process[J]. Water Purification Technology,2020,39(3):95-98.

[6] MARTYNA Grzegorzek,KATARZYNA Majewska Nowak. The use of micellar-enhanced ultrafiltration (MEUF) for fluoride removal from aqueous solutions[J]. Separation and Purification Technology,2018,195(1):54-61.

[7] 张浩,李诚,顾悦,等. 电絮凝法同步去除地下水中砷、锰、氟的效能及机理[J]. 工业水处理,2021,41(7):121-125.

ZHANG Hao,LI Cheng,GU Yue,et al. Performance and mechanism of simultaneous removal of arsenic,manganese and fluorine from groundwater by electro-flocculation[J]. Industrial Water Treatment,2021,41(7):121-125.

[8] MUHAMMAD K S,JUN Y K,YOUNG G C. Synthesis of bone char from cattle bones and its application for fluoride removal from the contaminated water[J]. Groundwater for Sustainable Development,2019,8(1):1-9.

[9] JEONG S,KIM D,YOON H O. Stabilization of fluorine in soil using calcium hydroxide and its potential human health risk[J]. Environmental Engineering Research,2019,24(4):654-661.

[10] ANASTASIOS I,MITSIONIS,TIVERIOS C. The effect of citric acid on the sintering of calcium phosphate bioceramics[J]. Ceramics International,2010,36(1):623-634.

[11] SKWAREK E,JANUSZ W,STERNIK D. Adsorption of citrate ions on hydroxyapatite synthetized by various methods [J]. Journal of Radioanalytical and Nuclear Chemistry,2014,299(1):2027-2036.

[12] JIN X Y,ZHUANG J Z,ZHANG Z. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH[J]. Journal of Colloid and Interface Science,2015,443:125-130.

[13] HUANG Shaomeng,HU Minglei,DAN Li,et al. Fluoride sorption

from aqueous solution using Al(OH)3-modified hydroxyapatite nanosheet[J]. Fuel,2020,279(1):1-11.

[14] 马艺娟,郝丽静,杜绍龙. 柠檬酸钠调控水热合成羟基磷灰石微球[J]. 无机材料学报,2014,29(3):284-288.

MA Yijuan,HAO Lijing,DU Shaolong,et al. Synthesis of hydroxyapatite microspheres by hydro-thermal method under the control of sodium citrate[J]. Journal of Inorganic Materials,2014,29(3):284-288.

[15] 全沁果,杨明,林菲,等. 响应面法优化鸡蛋壳柠檬酸钙的制备工艺[J]. 核农学报,2016,30(1):79-85.

QUAN Qinguo,YANG Ming,LIN Fei,et al. Optimization on the preparation of calcium citrate from eggshells with response surface methodology[J]. Journal of Nuclear Agricultural Sciences,2016,30(1):79-85.

[16] LEEUWENBURGH S C G,ANA I D,JANSEN J A. Sodium citr-

ate as an effective dispersant for the synthesis of inorganic-organic composites with a nano-dispersed mineral phase [J],Acta Biomaterialia,2010,6(1):836-844.

[17] XU F G,JIANG C Y,Li D. Defluoridation of wastewaters usingHAP-coated-limestone[J]. Separation Science and Technology,2019,54(14):1-8.

[18] 常青,茹洪强,喻亮. 柠檬酸对Ca(NO3)2-P2O5体系合成羟基磷灰石粉体的影响[J]. 东北大学学报(自然科学版),2011,32(1):85-93.

CHANG Qing,RU Hongqiang,YU Liang. Influence of citric acid on synthesis of powdered hydroxyapatite with Ca(NO3)2-P2O5 system[J]. Journal of Northeastern University (Natural Science),2011,32(1):85-93.

[19] 仇满德,杨盼,代爱梅,等. 水热体系中表面活性剂对合成羟基磷灰石晶体的影响[J]. 人工晶体学报,2015,44(4):1137-1142.

QIU Mande,YANG Pan,DAI Aimei,et al. Effect of surfactants on the crystals of synthetic hydroxyapatite in the hydrothermal system [J]. Journal of Synthetic Crystals,2015,44(4):1137-1142.

[20] 黄志良,刘羽,胥焕岩. 磷灰石矿物材料[M]. 北京:化学工业出版社,2008:228-229.

[21] XU B,ZHANG Y,WANG J. Hydrogeochemistry and human hea-

lth risks of groundwater fluoride in Jinhuiqu irrigation district of Wei River basin,China[J]. Human & Ecological Risk Assessment,2019,25(1/2):230-249.

[22] SUN J Y,CAI S,WEI J L. Corrosion resistance and rapid mineralization of hydroxyapatite coated magnesium alloy prepared by hydrothermal method[J]. Journal of the Chinese Ceramic Society,2020,48(6):810-817.

[23] 齐美丽,肖桂勇,吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程,2017,45(5):46-51.

QI Meili,XIAO Guipeng,LYU Yupeng. Effect of amino acids on morphology of hydrothermally synthesized hydroxyapatite fibers[J]. Journal of Materials Engineering,2017,45(5):46-51.

[24] 朱研,徐玲玲,刘晨辉. 表面活性剂对合成羟基磷灰石晶体的影响[J]. 南京工业大学学报(自然科学版),2020,42(1):87-93.

ZHU Yan,XU Lingling,LIU Chenhui. Effects of surfactants on the crystal of synthetic hydroxyapatite[J]. Journal of Nanjing Tech University (Natural Science Edition),2020,42(1):87-93.

[25] LI X Y,ZHU J X,SUN T T,et al. Preparation and molding of rare earth magnesia composite fluorine adsorbent [J]. Fine Chemicals,2020,37(1):147-155.

[26] WEI W,WANG X,WANG Y,et al. Evaluation of removal efficiency of fluoride from aqueous solution using nanosized fluorapatite[J]. Desalination and Water Treatment,2014,52(1):31-33.

[27] HUANG S M,HUA M L,LI D,et al. Fluoride sorption from aqueous solution using Al(OH)3-modified hydroxyapatite nanosheet[J]. Fuel,2020,279:118486.

[28] AMRUTA S,BISHNUPRIYA N,PRAMILA K. Kinetics and me-

chanistic interpretation of fluoride removal by nanocrystalline hydroxyapatite derived fromLimacine artica shells[J].Journal of Environmental Chemical Engineering,2017,5(1):5429-5438.

[29] JAVIER A,ALFREDO I,JOSE R,et al. Synergistic effect of zeolite/chitosan in the removal of fluoride from aqueous solution[J]. Environmental Technology,2020,41(12):1554-1567.

[30] WIMALASIRI K,FERNANDO M,WILLIAMS R,et al. Microwa-

ve assisted accelerated fluoride adsorption by porous nano-hydro-

xyapatite[J]. Materials Chemistry and Physics,2021,257(1):12312.

洁净煤技术
《洁净煤技术》(月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 1494文章总数
  • 168984访问次数
  • 17篇 最新文章
  • 编辑部专区

    联系我们