欢迎您阅读、引用和转发!
当前位置:首页 > 第2期 > 垃圾焚烧电站入炉垃圾低位热值及不确定度研究

垃圾焚烧电站入炉垃圾低位热值及不确定度研究

徐 凯,钟 平,宋金时,孟桂祥,韩国庆,曹寿峰

(西安热工研究院有限公司苏州分公司,江苏 苏州 215153)

摘 要:根据FDBR标准及不确定度原理,介绍了垃圾焚烧电站入炉垃圾低位热值计算方法,构建了入炉垃圾低位热值不确定度计算模型。以某935 t/d垃圾焚烧锅炉为研究对象,进行了入炉垃圾低位热值计算分析并对入炉垃圾低位热值测试不确定度进行了评定。结果表明:入炉垃圾低位热值与垃圾焚烧电站设计热值的匹配程度直接影响垃圾焚烧锅炉的运行状态,应加强对入炉垃圾低位热值的跟踪分析;相较于垃圾送样化验,性能试验方式更能反映入炉垃圾热值的真实情况;依据FDBR标准能够准确获得性能测试期间的入炉垃圾低位热值平均值,测试精确度高,但运行人员仍无法根据入炉垃圾情况实时调整机组运行状态,入炉垃圾热值的实时预测研究仍是当前阶段的研究重点;过热蒸汽质量流量、生活垃圾质量流量、省煤器出口烟气体积流量、炉渣热灼减率、省煤器进口给水温度、过热蒸汽温度、一次风蒸预器中间段风温、湿炉渣量占垃圾处理量百分比、省煤器出口烟温9个参数的测量不确定度占入炉垃圾低位热值不确定度权重值的99.3%,提高此9个参数的测量精度,确保入炉垃圾低位热值的测试质量。

关键词:垃圾焚烧电站;入炉垃圾低位热值;不确定度分析;能量平衡原理

中图分类号:TQ53

文献标志码:A

文章编号:1006-6772(2022)02-0169-06

收稿日期:2021-07-02;

责任编辑:常明然

DOI:10.13226/j.issn.1006-6772.21070201

移动阅读

作者简介:徐 凯(1989—),男,山东潍坊人,工程师,硕士。E-mail:xukai@tpri.com.cn

引用格式:徐凯,钟平,宋金时,等.垃圾焚烧电站入炉垃圾低位热值及不确定度研究[J].洁净煤技术,2022,28(2):169-174.

XU Kai,ZHONG Ping,SONG Jinshi,et al.Low level calorific value and uncertainty of waste in MSW incineration power plant[J].Clean Coal Technology,2022,28(2):169-174.

Low level calorific value and uncertainty of waste in MSW incineration power plant

XU Kai,ZHONG Ping,SONG Jinshi,MENG Guixiang,HAN Guoqing,CAO Shoufeng

(Suzhou Branch of Xian Thermal Power Research Institute Co.,Ltd.,Suzhou 215153,China)

Abstract:According to the FDBR standard and the principle of uncertainty,the calculation method of low heat value (LHV) of municipal solid waste(MSW) incineration power plant was introduced,and the uncertainty calculation model of LHV of MSW was constructed. Taking a 935 t/d MSW incineration boiler as the research object,the LHV of MSW was calculated and analyzed,and the uncertainty of LHV test was evaluated. The results show that the matching degree of the LHV of MSW into the furnace and the designed LHV of the MSW incineration power station directly affects the operation state of the MSW incineration boiler. The tracking and analysis of the LHV of MSW should be strengthened. Compared with the MSW sample test,the performance test method can better reflect the real situation of LHV of MSW into the furnace. According to the FDBR standard,the average value of the LHV of the furnace waste during the performance testing can be accurately obtained,and the test accuracy is high. However,the operator is still unable to adjust the running state of the unit in real time according to the furnace waste. The real-time prediction of the LHV of the furnace waste is still the focus of the current stage. The measurement uncertainty of superheated steam mass flow,municipal solid waste mass flow,flue gas volume flow at economizer outlet,slag loss on ignition,economizer inlet feed water temperature,superheated steam temperature,air temperature in the middle section of primary air preheater,the ratio of wet furnace slag,economizer outlet flue gas temperature accounts for 99.3% of the uncertainty of LHV of waste into the furnace. Improving the measurement accuracy of these nine parameters can ensure the test quality of the LHV of MSW.

Key words:MSW incineration power station;LHV of MSW;uncertainty analysis;energy balance principle

0 引  言

因垃圾焚烧处理对垃圾减量化、资源化以及无害化效果明显,近年来垃圾焚烧电站建设数量急剧增加[1-5]。垃圾热值是垃圾焚烧电站项目立项、工艺设备设计和运行优化及调整的重要依据[6]。垃圾热值一般用量热计直接测定或经验公式分析法计算得出[7-8],但由于入炉垃圾本身的多样性及垃圾燃料成分波动剧烈,导致难以获取有代表性的入炉垃圾样品进行分析[9],上述2种方法得到的垃圾热值通常与实际入炉垃圾热值存在较大偏差。FDBR Guideline RL 7-2013[10]标准(简称“FDBR标准”)提供了利用能量平衡原理计算得到垃圾焚烧电站入炉垃圾热值的方法。垃圾热值不确定度用于表示入炉垃圾低位热值的分散性,不确定度的值越小,代表入炉垃圾低位热值测试质量越高[11-13]

针对垃圾热值的研究主要集中在影响因素分析[14-15]、计算模型[16-19]等方面,张瑛华等[7]利用BP神经网络,结合已有城市垃圾热值数据,建立了基于神经网络的垃圾热值计算模型,能够较好地计算垃圾热值。在电厂性能试验中,不确定度分析主要应用于锅炉效率不确定度分析[20-24]、全厂净热耗率不确定度分析[13]等。目前鲜有文献通过能量平衡原理对垃圾焚烧电站入炉垃圾低位热值进行计算并对入炉垃圾低位热值进行不确定度分析,笔者以FDBR标准和JJF 1059.1[11]为准则,结合某935 t/d垃圾焚烧电站入炉垃圾低位热值性能试验,计算得出入炉垃圾低位热值及其不确定度,并定量分析了各个参数的测量不确定度对入炉垃圾低位热值测试质量的影响。

1 入炉垃圾低位热值测试测试

依据FDBR标准,入炉垃圾低位热值可根据能量平衡原理计算得出。入炉垃圾低位热值计算的基本思路是:① 计算有用输出热量及各项热损失,根据能量平衡原理,输出热量等于输入热量,得到进入系统边界的总输入热量;② 计算除燃料(垃圾)外的其他输入热量,得到燃料(垃圾)输入热量;③ 根据燃料(垃圾)质量流量及自身显热热量,计算得出入炉垃圾低位热值。为了能够提高入炉垃圾低位热值的测量精确度,性能试验时长不应低于8 h。

计算入炉垃圾低位热值所需公式如下:

QN QV,ges=QZ QZ,B

(1)

QV,ges=QG QCO QRA QFA QSt QKu

(2)

QZ=QPL QSL QFL QLV QBru

(3)

QZ,B=mB[Hu,B cB(tB-tb)],

(4)

(5)

式中,QN为有用热输出;QV,ges为总体热损失;QZ为除燃料(垃圾)外的其他输入热量;QZ,B为燃料(垃圾)输入热量;QG为排烟热损失;QCO为CO未完全燃烧热损失;QRA为炉渣显热及未完全燃烧热损失;QFA为飞灰显热及未完全燃烧热损失;QSt为散热损失,QKu为炉排冷却热损失;QPL为一次风带入的热量;QSL为二次风带入的热量;QFL为工艺风(燃烧器冷却风、炉排冷却风等)带入的热量;QLV为蒸汽预热器带入的热量;QBru为水蒸气带入的热量;mB为燃料(垃圾)质量流量;Hu,B为入炉燃料(垃圾)低位热值;cB为燃料(垃圾)比热容;tB为燃料(垃圾)温度;tb为基准温度(25 ℃)。

2 不确定度计算

2.1 不确定度数学模型

进行入炉垃圾低位热值不确定度分析,首先需建立数学模型,输出量y与输入量(x1,x2,…,xN)之间的函数关系[20]如下:

y=f(x1,x2,…,xN)。

(6)

数学模型应包括影响测量结果的全部输入量,任何影响到测量结果的各个不确定度分量均不能遗漏或重复。

2.2 不确定度评定及合成

2.2.1 A类不确定度

在规定条件下,对已经测得的数据使用统计分析方法进行评定,称为A类不确定度评定,A类评定通常包括单点测量和多点测量[21]。单点测量,即在一个位置随时间变化对某一参数进行连续多次测量,测量参数包括空气侧(一次风、二次风、炉排冷却风等)流量、大气压力、干球温度、相对湿度、燃料(垃圾)质量流量、过热蒸汽流量、过热蒸汽压力、过热蒸汽温度、省煤器进口给水温度等,测量参数的样本平均值计算公式为

(7)

单个测得值xk的样本标准差s(xk)计算公式为

(8)

样本平均值标准偏差计算公式为

(9)

式中,为样本平均值;n为单个参数的测量次数;xi为第i次测量数据;xk为单个参数;s(xk)为参数xk的样本标准差;为样本平均值标准偏差。

为提高测量准确度,需要按照网格法布置以进行部分参数的多点测量,此类参数包括一次风蒸预器中间段及出口风温、二次风机进口风温、省煤器出口烟温等。网格样本整体标准偏差计算公式为

(10)

式中,为网格样本整体标准偏差;m为横截面网格中点的总数;为网格中第k点样本平均值标准偏差。

2.2.2 B类不确定度

以不同于A类评定的方法评定测量不确定度量,称为B类不确定度评定[21]。对于入炉垃圾低位热值测试,获得B类评定的途径主要有:以前记录得到的数据;仪表校验证书、测试规范提供的数据等[20]

2.2.3 合成不确定度

各参数的测量不确定度确定后,根据不确定度传播率可计算得出测试结果的合成不确定度。当各测量参数相互独立时,合成不确定度uc(y)计算公式为

(11)

其中,为灵敏度系数,记为Ci,对于计算十分复杂的模型,灵敏度系数通常采用数值扰动法求取,即本数学模型中,∂xi取1%,δfiδxi变化1%引起的函数变化量[22-23]μ(xi)为输入量的标准不确定度。

2.2.4 扩展不确定度

扩展不确定度U计算公式为

U=kuc(y),

(12)

其中,k取2~3。对于入炉垃圾低位热值测试,根据正态分布,p值取2[24-25]

3 入炉垃圾低位热值不确定度算例

3.1 机组概况

某垃圾焚烧电站焚烧炉型式为正向阶梯反复摇动机械式Dyna炉排炉,余热锅炉型式为单汽包、中温、次高压自然循环水管锅炉,锅炉设计参数见表1。

表1 焚烧炉-余热锅炉设计参数

Table 1 Designed parameters of boiler

3.2 测试方法及试验数据

根据FDBR标准要求布置测试系统,入炉垃圾低位热值试验所需的37个测试数据见表2。

表2 入炉垃圾低位热值试验数据

Table 2 Data of LHV test of MSW

3.3 入炉垃圾低位热值计算结果及分析

根据能量平衡原理,表3列出了入炉垃圾低位热值的计算数据。由表3可知,MCR负荷工况下,入炉垃圾低位热值为8 762.7 kJ/kg,与设计入炉垃圾低位热值(8 792.0 kJ/kg)较接近,说明入炉垃圾与焚烧炉-余热锅炉设计匹配性较好。入炉垃圾低位热值与垃圾焚烧电站设计热值的匹配程度直接影响垃圾焚烧锅炉的运行状态,日常运行中应加强对入炉垃圾低位热值的跟踪分析。

表3 入炉垃圾低位热值计算数据

Table 3 Calculation data of LHV of MSW

需要注意的是,依据FDBR标准能够准确获得性能测试期间(如本次测试时长为8 h)的入炉垃圾低位热值平均值,测试精确度高,但弊端在于运行人员仍无法根据入炉垃圾情况实时调整机组运行状态。因此,实时精准预测入炉垃圾热值的研究,是当前阶段需要突破的重点。

3.4 各测量参数灵敏度及不确定度计算

通过A类、B类不确定度评定,可以计算得出各参数的合成不确定度。表4给出了入炉垃圾低位热值计算过程中所涉及的37个不确定度计算结果。

表4 各因素测量不确定度计算汇总

Table 4 Calculated results of measurement uncertainties

续表

注:Ci单位与测量参数的单位一致。

本次性能测试持续时间为8 h,为将入炉垃圾低位热值计算结果与取样结果进行对比,每4 h对入炉垃圾进行1次取样,共计取样2次,取样结束后立即送实验室化验。由表3可以看出,2次样品的入炉垃圾低位热值化验结果差异较大,2次样品的化验平均值与性能试验计算值接近,根本原因为垃圾自身波动大,样品难以具有代表性。因此,相较于垃圾送样化验,性能试验方式更能反映入炉垃圾热值的真实情况。

由表4可知,入炉垃圾低位热值合成不确定度=82.8 kJ/kg,包含因子=2,扩展不确定度=165.5 kJ/kg,相对扩展不确定度为1.89%。

3.5 不确定度分析

各主要参数对入炉垃圾低位热值不确定度的影响权重如图1所示。由表4和图1可以看出,影响权重由大到小排序为mD>mB>qG>uRA>tSp>tD>tPL1>φRA>tG>mSCR>qPL>tout>tin>φMO>PD>tPL0>φFA>tSL>tPL2>φ(CO2)>uFA>Pw>φ(H2O)>mw>qSL>PSp>PSL>φ(O2)>tDB>rH>qFL2>PFL2>qFL1>PA>PFL1>Pin>φ(CO)。其中,过热蒸汽质量流量测量不确定度分量所占入炉垃圾低位热值合成不确定度权重值最大,为44.0%;其次是生活垃圾质量流量测量不确定度分量,所占权重值为35.7%。过热蒸汽质量流量、生活垃圾质量流量、省煤器出口烟气体积流量、炉渣热灼减率、省煤器进口给水温度、过热蒸汽温度、一次风蒸预器中间段风温、湿炉渣量占垃圾处理量百分比、省煤器出口烟温9个参数测量不确定度分量,所占入炉垃圾低位热值不确定度权重值为99.3%。性能试验期间应着重提高此9个参数的测量精度,有效保证入炉垃圾低位热值的测试质量。

图1 主要参数对结果不确定度影响权重
Fig.1 Weight of uncertainty of main parameters

SCR系统蒸汽流量、一次风体积流量、水冷炉排出口水温、水冷炉排进口水温等其他28项参数的不确定度分量所占权重值约占0.7%,对入炉垃圾低位热值测试结果的不确定度影响很小。

4 结论与建议

1)入炉垃圾低位热值与垃圾焚烧电站设计热值的匹配程度直接影响垃圾焚烧锅炉的运行状态,应加强入炉垃圾低位热值的跟踪分析。

2)相较于垃圾送样化验,性能试验方式更能反应入炉垃圾热值的真实情况。

3)依据FDBR标准能够准确获得性能测试期间的入炉垃圾低位热值平均值,测试精确度高,但弊端在于运行人员仍无法实时根据入炉垃圾情况调整机组运行状态。入炉垃圾热值的实时预测研究仍是当前阶段的研究重点。

4)各参数测量不确定度对入炉垃圾低位热值测试结果不确定度影响顺序为mD>mB>qG>uRA>

tSp>tD>tPL1>φRA>tG>mSCR>qPL>tout>tin>φMO>

PD>tPL0>φFA>tSL>tPL2>φ(CO2)>uFA>Pw>

φ(H2O)>mw>qSL>PSp>PSL>φ(O2)>tDB>rH>

qFL2>PFL2>qFL1>PA>PFL1>Pin>φ(CO)。

5)性能试验期间应提高过热蒸汽质量流量、生活垃圾质量流量、省煤器出口烟气体积流量、炉渣热灼减率、省煤器进口给水温度、过热蒸汽温度、一次风蒸预器中间段风温、湿炉渣量占垃圾处理量百分比、省煤器出口烟温9个参数的测量精度,以确保入炉垃圾低位热值测试结果的精确度。SCR系统蒸汽流量、一次风体积流量等28项参数的不确定度分量对入炉垃圾低位热值测试结果的不确定度影响可以忽略。

参考文献(References):

[1] 杨凤玲,李鹏飞,叶泽甫,等.城市生活垃圾焚烧飞灰组成特性及重金属熔融固化处理技术研究进展[J].洁净煤技术,2021,27(1):169-180.

YANG Fengling,LI Pengfei,YE Zefu,et al. Study progress on the composition characteristics of fly ash from municipal solid waste incineration and treatment technology of heavy metal melting and solidification[J]. Clean Coal Technology,2021,27(1):169-180.

[2] 陈怀俊,牛芳,王乃继.垃圾焚烧处置中二噁英和重金属污染控制技术进展[J].洁净煤技术,2021,27(6):59-75.

CHEN Huaijun,NIU Fang,WANG Naiji. Research progress of dioxins and heavy metal pollution control technologyin MSWI[J].Clean Coal Technology,2021,27(6):59-75.

[3] 杨凤玲,李鹏飞,任磊,等.超高温等离子体气化熔融对垃圾焚烧飞灰的影响[J].洁净煤技术,2021,27(3):268-274.

YANG Fengling,LI Pengfei,REN Lei,et al.Influence of ultra-high temperature plasma gasification and melting on munici-pal solid waste incineration fly ash[J].Clean Coal Technology,2021,27(3):268-274.

[4] 郭志,刘志敏. 垃圾焚烧飞灰悬浮预热等离子体熔融系统热力学计算及能耗费用研究[J]. 热力发电,2020,49(4):12-18.

GUO Zhi,LIU Zhimin. Thermodynamic calculation and energy cost of plasma melting system for MSW incineration fly ash with suspension preheating[J]. Thermal Power Generation,2020,49(4):12-18.

[5] 刘军,李全功,罗晓宇,等. 垃圾焚烧电厂焚烧炉-余热锅炉性能对比试验研究 [J]. 科学技术与工程,2020,20(17):6873-6877.

LIU Jun,LI Quangong,LUO Xiaoyu,et al. Experimental research on performance comparison of incinerator-heat recovery boiler in solid waste incineration power plants [J]. Science Technology and Engineering,2020,20(17):6873-6877.

[6] 杨涛. 基于经济统计数据的生活垃圾热值计算模型 [J]. 环境工程技术学报,2014,4(2):158-163.

YANG Tao. Economic statistics based municipal solid waste heating value calculation model [J]. Journal of Environment Engineering Technology,2014,4(2):158-163.

[7] 张瑛华,张友富,王洪. 基于神经网络的生活垃圾低位热值计算模型的研究与应用[J]. 电力建设,2010,31(9):94-97.

ZHANG Yinghua,ZHANG Youfu,WANG Hong. Research and application of the LHV of MSW calculation model based on neural network[J]. Electric Power Construction,2010,31(9):94-97.

[8] 房科靖,熊祖鸿,鲁敏,等. 垃圾热值的研究进展 [J]. 新能源进展,2019,7(4):359-364.

FANG Kejing,XIONG Zuhong,LU Min,et al.Research progress of garbage calorific value [J]. Advances in New and Renewable Energy,2019,7(4):359-364.

[9] The Amarican Society of Mechanical Engineering.Waste combust-

ors with energy recovery performance test codes:ASME PTC 34-2017 [S].New York:[s.n.],2008.

[10] FDBR working group. Acceptance testing of waste incineration plants with grate firing systems:FDBR-Guideline RL 7-2013 [S]. Dusseldorf:Fachverband Dampfkessel-,Behälter- und Rohrleitungsbau e.V,2013.

[11] 全国法制计量管理计量技术委员会.测量不确定度评定与表示:JJF 1059.1-2012[S].北京:国家质量监督检验检疫总局.2013.

[12] Measurement Uncertainty:ASME PTC 19.1-2005 [S].US:American Society of Mechanical Engineers,2005.

[13] 常经纬,赵永坚,田晓璇. 燃煤机组全厂净热耗率不确定度分析[J]. 热力发电,2019,48(3):80-86.

CHANG Jingwei,ZHAO Yongjian,TIAN Xiaoxuan. Uncertainty analysis of total plant net heat rate of a coal-fired unit [J]. Thermal Power Generation,2019,48(3):80-86.

[14] 李剑颖. 基于多元线性回归的生活垃圾热值影响因素分析[J]. 环境卫生工程,2019,27(4):35-40.

LI Jianying. Analysis on influencing factors of calorific value of MSW based on multivariate linear regression[J]. Environmental Sanitation Engineering,2019,27(4):35-40.

[15] 鲁晓菊,杨迪,姚俊花. 太原市生活垃圾热值影响因素研究[J]. 环境卫生工程,2018,26(3):29-32.

LU Xiaoju,YANG Di,YAO Junhua. Study on influencing factors of municipal solid waste heating value in Taiyuan[J]. Environmental Sanitation Engineering,2018,26(3):29-32.

[16] 谢昊源,黄群星,林晓青,等. 基于图像深度学习的垃圾热值预测研究[J]. 化工学报,2021,72(5):2773-2782.

XIE Haoyuan,HUANG Qunxing,LIN Xiaoqing,et al. Study on the calorific value prediction of municipal solid wastes by image deep learning[J]. CIESC Journal,2021,72(5):2773-2782.

[17] 尤海辉,马增益,唐义军,等. 循环流化床入炉垃圾热值软测量 [J]. 浙江大学学报(工学版),2017,51(6):1163-1172.

YOU Haihui,MA Zengyi,TANG Yijun,et al. Soft measurement of heating value of burning municipal solid waste for circulating fluidized bed [J]. Journal of Zhejiang University(Engineering Science),2017,51(6):1163-1172.

[18] 丁兰,张文阳,张良均,等. 基于人工神经网络的居民生活垃圾可燃成分热值预测[J]. 环境工程学报,2016,10(2):899-905.

DING Lan,ZHANG Wenyang,ZHANG Liangjun,et al.Prediction of household waste combustible component calorific value based on artificial neural network[J]. Chinese Journal of Environment Engineering,2016,10(2):899-905.

[19] 王亚琢,袁浩然,鲁涛,等. 基于经济发展水平的生活垃圾热值分析与预测[J]. 武汉大学学报(工学版),2012,45(6):721-723.

WANG Yazhuo,YUAN Haoran,LU Tao,et al.Municipal solid waste heat value analysis and prediction based on level of economic development[J]. Engineering Journal of Wuhan University,2012,45(6):721-723.

[20] 王志国,马一太,卢苇. 不确定度分析原理在锅炉热效率测算中的应用[J]. 中国电机工程学报,2005,25(3):127-131.

WANG Zhiguo,MA Yitai,LU Wei. The application of uncertainty analysis theory in thermal efficiency testing for boiler[J]. Proceedings of the CSEE,2005,25(3):127-131.

[21] 吕当振,段学农,陈一平,等. 各因素测量不确定度对锅炉热效率测试质量的影响 [J]. 热力发电,2014,43(5):54-58,64.

LYU Dangzhen,DUAN Xuenong,CHEN Yiping,et al. Effect of measurement uncertainty on test quality of boiler thermal efficiency[J]. Thermal Power Generation,2014,43(5):54-58,64.

[22] 卓迅佳,刘京燕,王江伟,等. 锅炉反平衡热效率不确定度分析及应用[J]. 热力发电,2012,41(2):32-36.

ZHUO Xunjia,LIU Jingyan,WANG Jiangwei,et al. Analysis and application of uncertainty in anti-balancing thermal efficiency of boilers[J]. Thermal Power Generation,2012,41(2):32-36.

[23] 华晓宇,王睿坤,裘立春,等. 基于ASME和GB两种标准的混煤掺烧锅炉反平衡效率及其不确定度计算[J]. 热力发电,2016,45(3):34-40.

HUA Xiaoyu,WANG Ruikun,QIU Lichun,et al. Anti-balancing efficiency and its uncertainty analysis of boiler burning mixed coal according to ASME and GB standard[J]. Thermal Power Generation,2016,45(3):34-40.

[24] 任海锋,阎维平,吴威. 不确定度原理在锅炉热效率测试中的应用[J]. 热力发电,2013,42(3):8-10,30.

REN Haifeng,YAN Weiping,WU Wei. Application of uncertainty principle in boiler thermal efficiency test[J]. Thermal Power Generation,2013,42(3):8-10,30.

[25] 焦同帅,阎维平,曹颖,等. CFB锅炉散热损失测算及估算对焚烧炉-余热锅炉效率的影响研究[J]. 热力发电,2016,45(12):45-49.

JIAO Tongshuai,YAN Weiping,CAO Ying,et al. Influence of measurement and estimation of heat loss on efficiency of CFB boiler[J]. Thermal Power Generation,2016,45(12):45-49.

洁净煤技术
《洁净煤技术》(月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 1494文章总数
  • 168984访问次数
  • 17篇 最新文章
  • 编辑部专区

    联系我们