欢迎您阅读、引用和转发!
当前位置:首页 > 第5期 > 煤粉掺氨空气分级燃烧排放特性及炉内过程烟气特性试验

煤粉掺氨空气分级燃烧排放特性及炉内过程烟气特性试验

汪 鑫1,韦 耿2,3,王 勇2,3,李维成2,3,陈 钧1,范卫东1

(1.上海交通大学 机械与动力工程学院,上海 200240;2.清洁燃烧与烟气净化四川省重点试验室,四川 成都 611731;3.东方电气集团东方锅炉股份有限公司,四川 自贡 643001)

摘 要:以往针对氨煤掺烧研究多集中在数值模拟及小型试验炉,大型试验炉上多为技术可行性的点工况试验。在一台50 kW自持燃烧下行试验炉中在不同工况下针对燃煤掺氨燃烧产物的排放和过程分布特性展开研究,重点分析了不同掺氨比例、燃尽风率及运行氧量的影响。为充分了解氨与煤燃烧过程中对NO生成的贡献,针对纯氨燃烧进行一系列试验。试验结果表明,空气分级燃烧可大幅降低燃煤掺氨燃烧NO的排放,掺氨比例为10%~90%时NO排放质量浓度在170~215 mg/m3,同纯煤燃烧NO排放质量浓度处于同一水平;最佳燃尽风比率维持在38%附近,继续增大燃尽风比率不会进一步降低NO排放,反而会导致燃烧不充分等负面影响。纯氨燃烧利用空气分级技术可以很好地控制出口NO浓度,但纯氨燃烧稳定性远不及氨煤掺混燃烧,运行氧浓度较低时易出现氨逃逸现象。燃煤掺混氨燃烧既可解决氨燃烧困难、出口NO排放浓度过高的问题,又可减少燃煤CO2排放,是一项极具潜力的技术路线。

关键词:燃煤掺氨燃烧;空气分级;下行炉;纯氨燃烧;NO排放

0 引 言

全球变暖和气候变化正有力推动化石燃料为基础的能源系统进行转型。燃煤发电占全球能源发电量的1/3以上,占全球CO2排放量的44%[1]。我国燃煤发电厂占总发电量的50%以上,我国电力供应不可能在短期内消除对煤炭的依赖。在碳达峰、碳中和发展目标下,减少燃煤电厂碳排放成为当务之急。为减少燃煤电厂CO2排放,大多数研究关注高效发电技术的开发与应用[2-6]、碳捕集利用与封存技术(CCUS)效率的提高[7-9]以及低碳/无碳燃料的利用[10-13]

氢能因其在为人类开发更清洁、更可持续的地球能源方面具有巨大潜力而备受关注[14-15]。然而,建立成熟的供应链技术,包括制造、储存、分销和使用,已被证明是氢经济体系的挑战[16-17]。为此,一些研究人员开始探索载氢燃料,如甲基环己烷[18-19]、液氢[20]、甲醇[21-23]和氨[24-25]

氨质量含氢率(17.6%)高于甲醇(12.5%)和甲基环己烷(6.1%),完全燃烧产物是N2和H2O,是一种极佳的可再生零碳燃料。随着全球范围内氨生产、储存、运输和利用基础设施的建立,以及氨应用法规和流程的制定,氨被视为未来能源系统的关键要素之一[26]

煤炭是一种廉价燃料,相比其他燃料排放更多CO2。为实现碳中和社会的最终目标,燃煤发电厂低碳改造迫在眉睫。为从源头上减少CO2排放,日本学者和许多能源公司提出利用氨替代燃煤电厂中部分煤炭[27-30]。在燃煤发电厂中使用氨/煤掺混燃烧是减少CO2排放的策略[31-34]。由于氨的可燃性较差,与煤掺混燃烧可利用燃煤产生的高环境温度,有效提高氨的燃烧性能[35-36]。此外,氨在燃煤电厂的选择性催化还原(SCR)技术中作为还原剂使用已久,在储存和分配方面具有成熟可靠的基础设施和技术[37-39]

然而,由于氨分子中氮含量较高,燃煤氨燃烧可能导致严重的NOx排放。TAMURA等[30]研究了1.2 MWth燃烧炉中氨/煤掺混燃烧情况。研究结果表明,随氨掺烧比例增加,CO2排放量减少,而NOx排放量增加。通过改变氨的注入方式,氨/煤掺混燃烧的NOx排放量可与燃煤NOx排放量持平。CARDOSO等[40]利用数值模拟研究了氨喷射位置和空气分级燃烧对NOx排放的影响。发现空气分级燃烧技术可有效减少氨/煤掺混燃烧中NOx排放。WANG等[41-42]深入研究空气分级燃烧策略对氨/煤掺混燃烧中NOx排放的影响。结果表明,掺氨比例≤30%时,采用空气分级燃烧时,NOx排放量与纯煤燃烧时基本持平,但氨掺烧比例高于30%时,NOx排放随着掺氨比例的提高而成比例增加,掺烧50%氨时,NO排放质量浓度达1 000 mg/m3左右。

以往针对氨煤掺烧研究多集中在数值模拟及小型试验炉。在大型试验炉上进行燃煤掺氨燃烧研究多为技术可行性的点工况试验,缺乏技术原理和核心参数规律研究。鉴于此,笔者在1台50 kW下行自持燃烧试验炉中开展燃煤掺氨燃烧试验,研究不同掺氨比例下出口CO2/O2/NO浓度。在此基础上,分析空气分级技术应用于燃煤掺氨燃烧的效果,并阐明燃尽风比率及过量空气系数对燃煤掺氨燃烧出口NO的影响,并对纯氨燃烧工况进行初步尝试。

1 试 验

1.1 试验系统

燃煤掺混氨燃烧试验在1台50 kW下行燃烧试验炉系统上开展,具体如图1所示。下行炉实物图如图2所示。整个试验系统分为给粉系统、炉体部分、供气系统、采样系统、烟气处理系统。启炉时,试验台先通过电加热模式将炉膛加热至800 ℃,然后向炉膛中通入天然气和空气,天然气点燃后停止电加热,利用天然气燃烧持续烘炉至1 100 ℃。随后向炉膛中送入煤粉,并逐渐降低天然气流量,待煤粉稳定燃烧后,停止通入天然气。此时,炉膛主燃区温度达1 400 ℃。待燃烧环境温度稳定后,根据不同工况,调整氨气流量和给粉机的给粉量进行燃煤掺混氨气试验。试验台高6 m,内部炉膛高5 m,燃烧区炉膛取样系统共有17个沿程烟气采样口,通过外接的管路系统可十分简便地对沿程气体进行采样分析,采样烟气经过滤器过滤后进入烟气分析仪测量。在炉膛出口布置氨气检测装置(量程0~100×10-6),检测氨燃烧过程中是否有氨逃逸出炉膛。取样孔另一侧为燃尽风口,分为上、下2个燃尽风口,两口相距1.75 m。

图1 50 kW下行燃烧试验台系统

Fig.1 Schematic of 50 kW downstream furnace system

图2 50 kW下行燃烧试验台实物图

Fig.2 Diagram of 50 kW self-sustained downstream furnace system

燃煤掺混氨燃烧器模型示意如图3所示。在此燃烧器中,氨通过单独通道进入炉膛;煤在一次风的运载下,在氨通道外侧通道,环绕氨通道进入炉膛;煤和一次风通道的外侧依次为内二次风和外二次风。

图3 燃煤掺混氨燃烧器示意

Fig.3 Schematic of ammonia/coal co-firing burner

1.2 试验方法

试验用煤为神府烟煤,煤质分析见表1。试验中,总燃烧功率为50 kW,对应煤粉最大用量为7.28 kg/h。在掺烧工况下,总功率维持50 kW不变,随掺氨比例提高,给粉量逐渐降低,相应地,氨气供给量增多。试验所需空气由送风母管提供,分为一次风、内二次风、外二次风、上燃尽风和下燃尽风。

表1 燃料特性

Table 1 Ultimate and proximate analysis of coal

氨煤掺烧试验研究不同掺氨比例(氨的掺烧比例是入炉氨热量在入炉全部燃料热量的占比(氨的低位发热量为18.6 MJ/kg))下燃煤掺混氨燃烧的NO排放特性,以及空气分级技术对氨煤掺烧NO排放减排效果,在不同掺氨比例、燃尽风比率及运行氧量下进行试验;纯氨燃烧研究了不同比例氨与天然气掺烧过程中NO排放水平,以及燃尽风比率、二次风配比、运行氧量对纯氨燃烧NO排放的影响。试验工况见表2。除进行运行氧量试验外,所有工况下过量空气系数选择1.2,对应运行氧量为3.5%。不同工况下始终保持一次风量不变,根据不同工况需求,调整燃尽风量和二次风量,除特殊工况外,内、外二次风占比相同,而上、下两级燃尽风占比始终相同。

表2 试验工况

Table 2 Experimental condition

2 试验系统和研究方法

本试验使用50 kW下行燃烧试验炉,利用燃料自身燃烧释放热量,维持炉内环境温度,可近似模拟实炉中煤粉燃烧全过程。在该下行燃烧试验炉中首先研究了燃煤掺氨燃烧的燃烧特性和排放特性。为深入理解氨在燃煤锅炉中燃烧特性,在该下行燃烧试验炉中进行纯氨在不同工况下的试验。

2.1 燃煤掺混氨燃烧

2.1.1 不同掺氨比例下燃煤掺氨燃烧产物排放特性

燃尽风38%时,不同氨掺烧比例下CO2排放量如图4所示。可知氨掺入可有效降低CO2排放,随掺氨比例提高,燃料中碳源成比例下降,CO2排放基本呈线性下降趋势。

图4 不同掺氨比例下燃煤掺氨燃烧过程CO2浓度变化

Fig.4 CO2 concentration versus ammonia co-firing ratios

氧气浓度反映燃料在炉内燃烧情况。不同掺氨比例下燃煤掺氨燃烧过程O2浓度变化如图5所示,可知掺烧10%~80%氨时,出口氧体积分数在3.5%左右,与不掺氨工况基本相同。表明分级燃烧和不分级燃烧工况下,掺氨对煤粉燃尽的影响很小,2种燃料在炉内均能充分燃烧。因该燃烧器是按50%掺氨比例设计的煤氨混烧工况条件,所以掺氨比例提高至90%及以上时,分级燃烧与不分级燃烧工况下出口氧气浓度明显增加,增至4%以上,表明该燃烧器在纯烧氨工况下燃烧不充分。

图5 不同掺氨比例下燃煤掺氨燃烧过程O2浓度变化

Fig.5 O2 concentration versus ammonia co-firing ratios

空气分级燃烧技术是燃煤锅炉中常用的可有效降低燃煤NO排放的技术。为降低燃煤掺氨燃烧过程中NO排放,尝试将分级燃烧技术用于燃煤掺氨燃烧,并与燃煤掺氨不分级燃烧NO排放浓度进行对比,如图6所示。可知燃煤掺氨不分级燃烧出口NO排放浓度随掺氨比例提高而迅速上升。掺氨比例由0增至95%过程中,出口NO排放质量浓度由500 mg/m3增至2 987 mg/m3,涨幅为497%。而分级燃烧出口NO排放浓度随掺氨比例的提高变化很小。掺氨比例由0增至95%过程中,出口NO质量浓度在170~271 mg/m3,最小值出现在掺烧40%氨工况下,最大值在掺氨95%的工况下。与不分级燃烧相比,分级燃烧技术可大幅降低燃煤掺氨燃烧NO排放。

图6 不同掺氨比例下燃煤掺氨燃烧过程NO浓度变化

Fig.6 NO concentration versus ammonia co-firing ratios

燃尽风率30%,掺氨比例30%时,燃煤掺氨燃烧产物沿炉膛轴向方向的浓度变化如图7所示。可知在主燃区,NO先大量生成后迅速下降,在上燃尽风(红色虚线)通入后再次生成高浓度NO而后再次降至较低水平,稳定一段时间后在下燃尽风(蓝色虚线)通入后重新生成一定浓度NO。由于氨在单独通道进入炉膛,因而在主燃区煤和一次风会先行反应生成大量NO,而后这部分NO被炉膛中还原性物质(未反应完全的挥发分和焦炭、未反应的NH3和NH3分解产生的H2)还原为N2和一些还原NO的中间产物;上燃尽风通入后,未反应完的煤、NH3和还原NO的中间产物会与氧气反应重新生成大量NO,由于此时仍处于富燃料状态,因此炉膛中仍是还原性气氛,NO再次被还原为N2和还原NO的中间产物;下燃尽风通入后,此时由还原区过渡到燃尽区,炉膛中未完全反应的焦炭、NH3和还原NO的中间产物会与氧气反应重新生成一定浓度NO。

图7 氨燃煤掺氨燃烧沿程气氛特征变化规律(30%氨)

Fig.7 Typical trend of ammonia coal co-firing as a function of axial distance from the burner(ammonia co-firing ratio: 30%)

2.1.2 燃尽风率对燃煤掺氨燃烧NO排放的影响

燃尽风率是影响分级燃烧NO出口浓度的重要变量之一,代表空气分级的程度。掺氨比例30%时,不同燃尽风率下燃煤掺氨燃烧NO排放浓度如图8所示。可知随燃尽风率提高,燃煤掺氨燃烧NO排放浓度大幅下降。燃尽风率由10%提高至38%时,与不分级燃烧工况相比,NO排放浓度减少21%~90%,这是由于提高燃尽风率,一次风和二次风量降低,在主燃区煤和氨燃烧生成的NO越低,同时在还原区还原性气氛越浓,NO还原能力越强,所以NO排放浓度越低。但继续提高燃尽风率至45%和50%,NO排放浓度下降幅度提升极小。这是因为燃尽风率过高,出现还原饱和现象,燃料生成的NO较少,更多变成含氮中间产物存在于还原区。通入燃尽风后,含氮中间产物被氧化,重新生成大量NO,这部分NO无法通过分级燃烧减少。这表明燃尽风率不宜过大,过大的燃尽风率不仅不会带来更低的NO排放,反而会影响主燃区燃料燃烧,导致燃烧不充分、负荷下降、燃料逃逸等负面效果。

图8 不同燃尽风率下燃煤掺氨燃烧NO排放

Fig.8 NO emissions versus burnout air rate under ammonia/coal co-firing

2.1.3 不同运行氧量对燃煤掺氨燃烧NO排放的影响

为检测燃煤掺氨燃烧NO排放浓度与运行氧量的关系,掺氨30%、燃尽风率38%的条件下,通过改变总风量方式即改变过量空气系数调整运行氧量,检测出口NO浓度变化,如图9所示。试验发现燃煤掺氨燃烧出口NO浓度对于运行氧量变化非常敏感。运行氧量为1.5%~3.5%时,出口NO质量浓度较低,在140~170 mg/m3;提高运行氧量至4.0%和5.0%,出口NO浓度大幅提高,分别增至393.2和596.8 mg/m3。这表明燃煤掺氨燃烧运行氧量不宜设置过高,因为在氧量充足的条件下,氨会与氧气反应生成大量NO,但也不能过低,过低的运行氧量会导致燃料燃烧不充分。通常设置运行氧量不超过3.5%,即过量空气系数选择不超过1.2为宜,既保证燃料良好燃烧,又保证出口NO浓度较低。

图9 不同运行氧浓度下燃煤掺氨燃烧NO排放

Fig.9 NO emissions versus operating oxygen under ammonia/coal co-firing

2.2 纯氨燃烧

研究发现氨与煤2种燃料的燃烧和污染物生成机制存在显著差异,燃煤电厂燃煤掺混氨燃烧过程中排放模式非常复杂。上述详细研究了燃煤掺混氨燃烧过程中燃烧特性,为充分了解氨与煤2种燃料燃烧过程中的污染物生成贡献及空气分级策略对这2种燃料主导的污染物生成的有效控制效果,需单独研究纯煤和纯氨在空气分级燃烧条件下的排放特性。纯煤燃烧研究成果较多,相关理论充实,但对于纯氨在锅炉中的燃烧以及污染物排放特性认识有所欠缺。试验证明分级燃烧可有效控制NO排放浓度,因而,后续所有试验均在空气分级条件下进行。

2.2.1 不同天然气掺比下氨燃烧NO排放水平

考虑到氨燃烧性较差,纯氨燃烧试验前,先利用天然气作为助燃气体与氨掺混燃烧,燃尽风率38%,氨掺烧比例由10%增至100%,检测出口NO、O2排放浓度,并与煤掺氨进行对比,如图10所示。氨掺烧比例由0提高至100%过程中,氨气检测器未检测到氨气逃逸现象,这表明氨可完全燃烧。由图10可知,氧气体积分数维持在3%~4%,与设定运行氧量3.5%相符,再次表明从掺氨10%提高至纯氨燃烧过程中,炉内燃料可以稳定燃烧。天然气中增加掺氨比例10%~40%时,出口NO质量浓度由61 mg/m3增至334 mg/m3。继续提高掺氨比例至100%,出口NO浓度稍下降,100%氨时,出口NO质量浓度为287 mg/m3。天然气掺氨出口NO变化与煤掺氨出口NO变化不同,不掺氨条件下,煤燃烧NO排放质量浓度为181 mg/m3远高于天然气燃烧时NO排放质量浓度61.2 mg/m3。然而在煤、天然气与不同比例氨掺烧过程中,天然气掺氨燃烧NO排放浓度逐渐超过煤掺氨出口NO浓度。掺氨比例10%时,二者出口NO排放浓度持平,掺氨比例≥20%时,煤掺氨出口NO浓度明显低于天然气掺氨。这一现象再次表明燃煤掺氨燃烧产生和还原NO是一个非常复杂的过程,与天然气掺氨相比,煤代表氮源增加,然而出口NO排放浓度下降,说明煤和氨之间存在某种耦合作用,燃烧过程中可降低彼此之间生成的NO。这一现象与CHEN等[43-45]研究相符,基于密度泛函数理论表明氨煤掺混燃烧过程中NH3与煤焦在还原区还原NO反应中存在协同促进机制,且通过化学反应动力学模拟发现掺氨可降低煤中燃料-N向到NO的转换率。

图10 不同天然气掺比下氨燃烧NO排放和O2浓度

Fig.10 NO and O2 concentration versus different natural gas co-firing ratios

2.2.2 燃尽风率对纯氨燃烧NO排放的影响

纯氨燃烧不同燃尽风率下NO排放浓度如图11所示。与前文燃煤掺氨燃烧不同燃尽风率变化类似,随燃尽风率提高,纯氨燃烧NO排放浓度大幅下降。但纯氨燃烧还原饱和现象出现更早。燃尽风率≥20%时,与不分级燃烧工况相比,NO降幅达91.9%,继续提高燃尽风率,NO降幅提升很小,可忽略不计。这表明纯氨分级燃烧无需很高的燃尽风率即可发挥分级燃烧效果。这是因为纯氨在单独通道中会先发生分解反应,生成H2和N2。由于环境温度和氨通道的长度固定,氨流速固定,因此,发生分解反应的氨比例变化较小。进入炉膛后,H2燃烧性远高于未发生分解反应的氨燃烧性,因此在还原区,H2抢占绝大多数O2,未反应的氨相当于在极低氧气环境中发生反应,生成N的中间产物存在于还原区,待燃尽风通入后重新生成NO。故而继续提高燃尽风率,NO降幅提升有限。

图11 不同燃尽风率下纯氨燃烧NO排放

Fig.11 NO emissions versus burnout air rate under pure ammonia combustion

2.2.3 二次风配比对纯氨燃烧NO排放的影响

纯氨燃烧器中,氨是单独通道进入炉膛,未与一次风混合。内二次风通道带旋流叶片,外二次风通道无旋流叶片。提高内二次风占比,空气与燃料混合更快、更充分,有助于还原区氨气燃尽。燃尽风率38%时,不同二次风配比下出口NO排放浓度如图12所示。可知随内二次风占比降低,出口NO排放浓度增长,内二次风占比60%、50%和40%时,出口NO排放质量浓度分别为225、246和323 mg/m3

图12 不同二次风配比纯氨燃烧NO排放

Fig.12 NO emissions versus secondary air distributing ratio under pure ammonia combustion

2.2.4 燃尽风率对纯氨燃烧NO排放的影响

为检测纯氨燃烧NO排放浓度与出口氧浓度的关系,在燃尽风率40%、10%和0下进行纯氨燃烧试验,通过改变总风量即改变过量空气系数调整出口氧浓度,检测出口NO浓度变化,如图13所示。试验发现纯氨燃烧出口NO浓度对于氧浓度变化非常敏感。燃尽风40%,出口氧体积分数由0.5%提高至7%时,出口NO浓度不断增加,由57 mg/m3增至803 mg/m3。燃尽风10%,出口氧体积分数由1.0%提高至5%时,出口NO浓度不断增加,由37 mg/m3增至4 541 mg/m3。在无燃尽风,出口氧体积分数由1.0%提高至3.5%时,出口NO浓度增加,由36 mg/m3增至4 164 mg/m3。发现出口氧浓度较低时,虽然出口NO排放浓度较低,但氨逃逸现象严重,尤其是燃尽风率较高工况下,说明纯氨燃烧所需燃烧环境较严苛。

图13 不同运行氧量纯氨燃烧NO排放

Fig.13 NO emissions versus operating oxygen under pure ammonia combustion

3 结 论

1)燃煤掺混氨燃烧出口NO排放浓度随掺氨比例提高而大幅增长。不分级燃烧时,掺氨比例为10%~90%,NO排放质量浓度为500~2 781 mg/m3。空气分级技术最高可降低NO排放浓度92%,掺氨比例10%~90%,NO排放质量浓度在170~215 mg/m3

2)燃尽风率对燃煤掺混氨燃烧NO排放浓度影响较大。燃尽风率由10%提高至38%,相比不分级工况,NO排放浓度下降幅度由20%提高至90%。继续提高燃尽风率,并未使NO排放浓度继续下降,反而造成燃料燃烧不完全的问题。

3)氨与煤掺混燃烧可以很好解决氨着火问题,仅需10%热量的煤,氨也能在该下行燃烧炉中稳定燃烧。但将掺氨比例提高至95%时,开始出现燃料燃尽问题。纯氨稳定燃烧条件较苛刻,需保证较高的出口氧浓度,但过高的出口氧浓度导致出口NO排放浓度极高。本试验中,维持燃烧炉出口氧体积分数在3%~4%,既可保证氨稳定着火,又可获得较低的出口NO排放浓度。

4)天然气掺氨出口NO排放浓度高于煤掺氨,表明燃煤掺氨燃烧生成和还原NO是非常复杂的过程,煤和氨之间存在某种耦合作用,在燃烧过程中可降低彼此之间生成的NO。

5)燃煤掺氨燃烧既可解决氨燃烧困难、出口NO排放浓度过高等问题,又可减少燃煤CO2排放。因此燃煤掺氨燃烧技术是可行性极高、潜力极大的技术路线,在未来传统能源碳减排新技术发展中具有竞争力。

参考文献(References):

[1] SUN Y, LI Z, WANG Q, et al. Low carbon pathway and life cycle assessment of ammonia co-firing in coal power plants under the context of carbon neutrality [J]. Energy Conversion and Management, 2023, 296: 117648.

[2] QIN Z, ZHANG Z, MA X. Effects of sewage sludge blending on techno-economic performance of Integrated Gasification Combined Cycle (IGCC) system [J]. Process Safety and Environmental Protection, 2022, 160: 584-593.

[3] LI H, ZHANG R, WANG T, et al. Simulation of H2S and CO2 removal from IGCC syngas by cryogenic distillation [J]. Carbon Capture Science &Technology, 2022, 3: 100012.

[4] ASIF M, BAK C U, SALEEM M W, et al. Performance evaluation of integrated gasification combined cycle (IGCC) utilizing a blended solution of ammonia and 2-amino-2-methyl-1-propanol (AMP) for CO2 capture [J]. Fuel, 2015, 160: 513-24.

[5] XU G, ZHOU L, ZHAO S, et al. Optimum superheat utilization of extraction steam in double reheat ultra-supercritical power plants [J]. Applied Energy, 2015, 160: 863-872.

[6] ZHOU J, LING P, SU S, et al. Exergy analysis of a 1 000 MW single reheat advanced supercritical carbon dioxide coal-fired partial flow power plant [J]. Fuel, 2019, 255: 115777.

[7] LI Q, LI X, LIU G, et al. Application of China′s CCUS environmental risk assessment technical guidelines (exposure draft) to the Shenhua CCS project [J]. Energy Procedia, 2017, 114: 4270-4278.

[8] TAPIA J F D, LEE J Y, OOI R E H, et al. A review of optimization and decision-making models for the planning of CO2 Capture, Utilization and Storage (CCUS) systems [J]. Sustainable Production and Consumption, 2018, 13: 1-15.

[9] HASAN M M F, FIRST E L, BOUKOUVALA F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU [J]. Computers &Chemical Engineering, 2015, 81: 2-21.

[10] BORA D, DUTTA A, MAHANTA P, et al. Membrane electrode assembly hybridized anaerobic digester for co-generation of methane enriched biogas and electricity [J]. Fuel, 2022, 316: 123315.

[11] KIM J, HUH C, SEO Y. End-to-end value chain analysis of isolated renewable energy using hydrogen and ammonia energy carrier [J]. Energy Conversion and Management, 2022, 254: 115247.

[12] SURYWANSHI G D, PATNAIKUNI V S, VOORADI R, et al. 4-E and life cycle analyses of a supercritical coal direct chemical looping combustion power plant with hydrogen and power co-generation [J]. Energy, 2021, 217: 119418.

[13] ELBAZ A M, WANG S, GUIBERTI T F, et al. Review on the recent advances on ammonia combustion from the fundamentals to the applications [J]. Fuel Communications, 2022, 10: 100053.

[14] BADE S O, TOMOMEWO O S, MEENAKSHISUNDARAM A, et al. Economic, social, and regulatory challenges of green hydrogen production and utilization in the US: A review [J]. International Journal of Hydrogen Energy, 2023,49:314-335.

[15] RASUL M G, HAZRAT M A, SATTAR M A, et al. The future of hydrogen: Challenges on production, storage and applications [J]. Energy Conversion and Management, 2022, 272: 116326.

[16] NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes [J]. Renewable and Sustainable Energy Reviews, 2017, 67: 597-611.

[17] MAZLOOMI K, GOMES C. Hydrogen as an energy carrier: Prospects and challenges [J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3024-3033.

[18] WANG Z, YE L, YUAN W, et al. Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion [J]. Combustion and Flame, 2014, 161(1): 84-100.

[19] KUMAR R, KISHORE VELAMATI R, KUMAR S. Combustion of methylcyclohexane at elevated temperatures to investigate burning velocity for surrogate fuel development [J]. Journal of Hazardous Materials, 2021, 406: 124627.

[20] BUSCH T, GROß T, LINßEN J, et al. The role of liquid hydrogen in integrated energy systems:A case study for Germany [J]. International Journal of Hydrogen Energy, 2023, 48(99): 39408-39424.

[21] MING Z, LIU B, ZHANG X, et al. Study of methanol spray flame structure and combustion stability mechanisms by optical phenomenology and chemical kinetics [J]. Fuel Processing Technology, 2023, 252: 107947.

[22] WANG B, WANG H, YANG C, et al. Effect of different ammonia/methanol ratios on engine combustion and emission performance [J]. Applied Thermal Engineering, 2024, 236: 121519.

[23] CHANG W, WANG C, WU Y, et al. Study on the mechanism of influence of cetane improver on methanol ignition [J]. Fuel, 2023, 354: 129383.

[24] WEI D, WU L, WANG T, et al. Numerical simulation of ammonia combustion with sludge and coal in a utility boiler: Influence of ammonia distribution [J]. Journal of the Energy Institute, 2023: 101409.

[25] RUJUB M A, SCHöNBORN A. Simulation of ammonia injection system for a compression ignition engine [J]. International Journal of Hydrogen Energy, 2024, 50: 834-846.

[26] AJIWIBOWO M W, DARMAWAN A, AZIZ M. A conceptual chemical looping combustion power system design in a power-to-gas energy storage scenario [J]. International Journal of Hydrogen Energy, 2019, 44(19): 9636-9642.

[27] ISHIHARA S, ZHANG J, ITO T. Numerical calculation with detailed chemistry of effect of ammonia co-firing on NO emissions in a coal-fired boiler [J]. Fuel, 2020, 266: 116924.

[28] ISHIHARA S, ZHANG J, ITO T. Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: Effect of ammonia co-firing ratio on NO emissions [J]. Fuel, 2020, 274: 117742.

[29] ZHANG J, ITO T, ISHII H, et al. Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio [J]. Fuel, 2020, 267: 117166.

[30] TAMURA M, GOTOU T, ISHII H, et al. Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace [J]. Applied Energy, 2020, 277: 115580.

[31] CHEN P, WANG Y, WANG P, et al. Oxidation mechanism of ammonia-N/coal-N during ammonia-coal co-combustion [J]. International Journal of Hydrogen Energy, 2022, 47(83): 35498-35514.

[32] YU M, YU X, YU D, et al. Molecular dynamics investigation of the effect of ammonia on coal pyrolysis and the nitrogen transformation [J]. Energy Conversion and Management, 2023, 285: 117006.

[33] ZHANG A, LIU X, XU Y, et al. Effect of ammonia and coal co-firing on the formation mechanism and composition characteristics of particulate matter [J]. Fuel, 2024, 358: 130231.

[34] ZHU H, CHENG M, XU J, et al. Nitrogen migration and transformation from ammonia to char during ammonia-coal/char co-pyrolysis [J]. International Journal of Hydrogen Energy, 2024, 49: 137-148.

[35] CHEN J, FENG G, FAN W, et al. Stabilization of air coflowed ammonia jet flame at elevated ambient temperatures [J]. International Journal of Hydrogen Energy, 2023, 48(62): 24127-24138.

[36] CHEN J, FAN W, ZHANG H. Experimental and numerical study of curvature effects and NO formation in ammonia Bunsen flames [J]. Fuel, 2023, 345: 128207.

[37] KOHSE-HÖINGHAUS K. Clean combustion: Chemistry and diagnostics for a systems approach in transportation and energy conversion [J]. Progress in Energy and Combustion Science, 2018, 65: 1-5.

[38] WANG L, XIA M, WANG H, et al. Greening Ammonia toward the Solar Ammonia Refinery [J]. Joule, 2018, 2(6): 1055-1074.

[39] PALYS M J, WANG H, ZHANG Q, et al. Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities [J]. Current Opinion in Chemical Engineering, 2021, 31: 100667.

[40] SOUSA CARDOSO J, SILVA V, EUSéBIO D, et al. Numerical modelling of ammonia-coal co-firing in a pilot-scale fluidized bed reactor: Influence of ammonia addition for emissions control [J]. Energy Conversion and Management, 2022, 254: 115226.

[41] WANG X, FAN W, CHEN J, et al. Experimental study and kinetic analysis of the impact of ammonia co-firing ratio on products formation characteristics in ammonia/coal co-firing process [J]. Fuel, 2022, 329: 125496.

[42] WANG X, FAN W, CHEN J, et al. Experimental study on effects of air-staged strategy and NH3 co-firing ratios on NO formation characteristics in ammonia/coal co-firing process [J]. Fuel, 2023, 332: 126217.

[43] CHEN P, WANG H, JIANG B, et al. An experimental and theoretical study of NO heterogeneous reduction in the reduction zone of ammonia co-firing in a coal-fired boiler: Influence of CO [J]. Fuel Processing Technology, 2022, 231: 107184.

[44] CHEN P, JIANG B, WANG H, et al. Experimental and theoretical calculations study on heterogeneous reduction of NO by char/NH3 in the reduction zone of ammonia co-firing with pulverized coal: Influence of mineral Fe [J]. Fuel, 2022, 310: 122374.

[45] CHEN P, GONG C, HUA C, et al. Experimental and mecha-nism study on NO formation characteristics and N chemical reaction mechanism in ammonia-coal co-firing [J]. Fuel, 2024, 360: 130539.

Characteristics analysis of ammonia/coal co-firing with air staged combustion in one-dimensional self-sustained combustion experimental furnace

WANG Xin1,WEI Geng2,3,WANG Yong2,3,LI Weicheng2,3,CHEN Jun1,FAN Weidong1

(1.School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2.Clean Combustion and Flue Gas Purification Key Laboratory of Sichuan Province,Chengdu 611731,China;3.Dongfang Electric Corporation Dongfang Boiler Co.,Ltd.,Zigong 643001,China)

AbstractPrevious studies on ammonia/coal co-firing have focused on numerical simulations and small-scale test furnaces, while large-scale test furnaces are mostly used for point-case tests of technical feasibility. In this paper, a detailed study of the emission and process distribution characteristics of ammonia/coal co-firing was carried out in a 50 kW one-dimensional self-sustained combustion experimental furnace under different operating conditions. In order to fully understand the contribution of ammonia and coal to NO production during the combustion process, a series of experimental studies were carried out for pure ammonia combustion. Air-staged combustion greatly reduces NO emissions from ammonia/coal co-firing combustion. With ammonia co-firing ratios ranging from 10% to 90%, NO concentrations varie from 170 to 215 mg/m3, which are at the same level with pure coal combustion. The optimal burnout air ratio is maintained near 38%. Further increasing the burnout air ratio will not further reduce NO emissions, but will lead to negative effects such as inadequate combustion. Pure ammonia combustion employing air-staged combustion technology can manage the exported NO concentration, but its stability is significantly worse than that of ammonia/coal co-firing, and ammonia is prone to escape when the oxygen concentration in the operation is low. Ammonia/coal co-firing may not only solve the problems of ammonia combustion difficulties and excessive NO emissions, but it can also minimize CO2 emissions from coal combustion, making it a very attractive technology route for future energy growth.

Key wordsammonia/coal co-firing;air staged combustion;drop tube furnace;pure ammonia combustion;NO emission

中图分类号:TK11;TK16

文献标志码:A

文章编号:1006-6772(2024)05-0056-09

收稿日期:2023-12-19;责任编辑:白娅娜

DOI:10.13226/j.issn.1006-6772.NU23121901

移动阅读

基金项目:国家重点研发计划资助项目(2023YFB4005705)

作者简介:汪 鑫(1992—),男,山东胶州人,博士研究生。E-mail:992569546@qq.com

通讯作者:范卫东(1971—),男,四川自贡人,教授,博士。E-mail:wdfan@sjtu.edu.cn

引用格式:汪鑫,韦耿,王勇,等.煤粉掺氨空气分级燃烧排放特性及炉内过程烟气特性试验[J].洁净煤技术,2024,30(5):56-64.
WANG Xin,WEI Geng,WANG Yong,et al.Characteristics analysis of ammonia/coal co-firing with air staged combustion in one-dimensional self-sustained combustion experimental furnace[J].Clean Coal Technology,2024,30(5):56-64.

洁净煤技术
《洁净煤技术》(月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 1494文章总数
  • 168984访问次数
  • 17篇 最新文章
  • 编辑部专区

    联系我们