欢迎您阅读、引用和转发!
当前位置:首页 > 第3期 > 生物质碳基电解水催化剂定向构筑研究进展

生物质碳基电解水催化剂定向构筑研究进展

刘法明,李国宁,马为洋,郭 敏,李诗杰,肖强强,陆万鹏,李 辉

(山东建筑大学 热能工程学院,山东 济南 250101)

摘 要:生物质碳具有廉价易得、环境友好以及物化结构可调控的优点,是负载过渡金属的良好基底,在电解水方面应用前景广阔。碳基底的比表面积、孔隙分布等物化结构直接影响了催化活性位点的利用以及电解液离子扩散,是发挥过渡金属电解水催化潜力、决定催化剂性能的关键。介绍了不同生物质的热解机理,对高温热解法、水热碳化法以及微波热解法等生物质碳常见制备方法进行了归纳,并比较不同制备方法优缺点。总结了物理法、化学法及模板法等生物质碳物化结构定向调控策略,探讨了不同调控策略对生物质碳比表面积、孔容、平均孔径等物理化学性质的影响。归纳了杂原子掺杂及金属活性组分负载等常见生物质碳基电解水催化剂构筑策略,并对其在析氧反应、析氢反应、双功能催化及杂化电解水等方面的研究现状进行总结,详细阐述了其在电解水方面取得的进展。最后对生物质碳基电解水催化剂在微介孔比例调控、导电性提升、亲水性提升以及催化剂成型处理等方面面临的挑战进行了展望。

关键词:生物质,碳基底,催化剂,定向构筑,电解水

0 引 言

随着人口不断增长,能源短缺与环境污染问题日益严重。在我国提出“2030碳达峰,2060碳中和”的大背景下,减少碳排放将成为研究热点。随着全国碳交易市场开启,化石燃料附加成本将升高[1]。因此,大力发展丰富、清洁的可再生能源势在必行。以太阳能为代表的可再生能源存在间歇性、周期性等固有缺陷,利用可再生能源生产绿氢可解决能量在空间、时间以及强度上不匹配的矛盾[2]。不仅提高能源利用效率,而且可提升能源系统的稳定性和可靠性[3-4]。因此,氢能在耦合可再生能源储能方面具有良好的发展趋势。2022年3月,国家发改委发布了《氢能产业发展中长期规划(2021—2035年)》,详细规划了我国未来氢能发展。国家六部委联合发布的《关于“十四五”推动石化化工行业高质量发展的指导意见》中明确指出,增强创新发展动力,加快突破“绿氢”规模化应用等关键技术。

电解水制氢是利用电流通过电解液将水分解成氢气和氧气的过程,其核心反应——析氧反应和析氢反应在实际情况下过电位较高,需要催化剂降低过电位以提高反应速率和能量利用率[5-6]。传统电解水催化剂以Ru、Ir、Pt等贵金属为主,由于贵金属价格昂贵,大幅限制了电解水制氢商业化应用。Fe、Co、Ni等过渡金属原料丰富、价格低廉,在电解水催化应用方面极具开发潜力[7-8],但过渡金属易团聚,阻碍了反应物与活性位点接触[9-10]。多孔碳材料具有较大比表面积和丰富的孔道结构,以多孔碳为基底负载过渡金属,可使催化活性位点充分暴露,且有利于离子扩散,促进反应物与活性位点接触,从而弥补过渡金属不足,充分发挥过渡金属催化效果,获得高性能电解水催化剂。

石墨烯、碳纳米管、膨胀石墨等在制备时常需要化石燃料作为前驱体,且制备条件苛刻、环境污染大[11]。我国生物质资源丰富,2022年生物质资源年产量约34.94亿t,具有零碳排放、储量大等优点,适合作为前驱体制备生物质碳[12-13]。为使生物质碳比表面积、孔隙分布等物化结构满足构筑电解水催化剂的需求,制备过程中需采用不同碳化和活化方法,定向调控其结构特征[14]。笔者对生物质碳基底制备方法、调控策略及其在电解水方面的应用进行了综述和展望。

1 生物质碳材料的制备方法

绿色植物“固碳”制备生物质碳示意如图1所示,生物质指绿色植物捕获大气中的二氧化碳通过光合作用形成的有机物。生物质碳通常由生物质3组分(纤维素、半纤维素以及木质素)通过碳化去除非碳元素制得[15]。纤维素和半纤维素直链结构中大量羟基在低温下降解成挥发性化合物,进而产生许多含氧杂环,随着温度升高,这些杂环脱水脱羧转化为芳香环进而形成碳材料[16]。木质素是由对羟基苯基、愈创木基和丁香酰基单元通过C—C键和醚键连接形成的三维交联分子。其碳化过程主要包括醚键断裂、含氧官能团脱除以及芳香环缩合重构[17]。根据来源不同,生物质可分为海洋中的藻类和陆地上的植被。藻类细胞壁的主要成分为纤维素和半纤维素,因此碳化机理与纤维素和半纤维素相似,陆地上的植被木质部主要成分为木质素,因此碳化机理与木质素相似。下面介绍几种常见的生物质碳制备方法。

图1 绿色植物“固碳”制备生物质碳示意[13]
Fig.1 Intention of green plants “Carbon Fixation” to produce biomass carbon[13]

1.1 高温热解法

生物质在惰性气体中加热去除挥发性物质和非碳元素,提高产物碳元素含量以得到生物质碳的方法为高温热解法。热解温度和热解时间是影响生物质碳物化性质的主要因素。随热解温度升高,生物质碳产率呈下降趋势,C元素含量逐渐增加,而H元素、O元素、H/C、O/C含量逐渐减少[18-19]。DEBEVC等[20]在300~700 ℃下进行碳化试验,发现随温度升高,生物质碳导电性逐渐增强。这是由于温度升高使碳层形貌更加规整,石墨化程度提升,有利于电子移动从而增强了导电性。随着热解时间延长,生物质碳产率、有机碳含量下降。由于热解时间延长使生物质碳后续反应更充分,生物质内小分子挥发物生成增多且挥发时间充足,导致生物碳产率与有机碳含量降低[21]

1.2 水热碳化法

水热碳化是指生物质在水热反应釜中,以水为反应介质,在一定温度及压力下通过脱水和脱羧反应降低前驱体中O和H含量,以提高C含量的生物质碳制备方法[22]。与高温热解法相比,水热碳化法具有能耗低、过程可控等优点[23-24]。水热温度和保温时间是影响生物质碳性能的主要因素。随着水热碳化温度上升和时间延长,生物质碳形貌变得更加规整,表面官能团数量逐渐减少[25]。PARSHETTI等[26]在150、250和350 ℃下进行了水热碳化试验。结果表明,产物O/C和H/C原子比随温度升高逐渐降低。其他生物质前驱体,如污泥、淀粉、城市固体废物等也有类似趋势[27-28]

1.3 微波热解法

微波是指频率在300 MHz~300 GHz的电磁波,微波加热通过离子极化、偶极子极化和界面极化3种方式提供了快速均匀的整体加热效果[15,29]。HUANG等[30]通过试验发现,与高温热解相比,微波热解活化能和指前因子明显降低。MATVEEV等[31]发现与高温热解相比,通过微波热解制得生物质碳的孔容更大,微波加热10 min制得生物质碳的孔容与高温热解制得样品相当,但效率明显提升。微波热解动力学参数主要与微波功率有关,加热速率和最高温度随微波功率的增加而增加(图2)[30]。不同微波热解时间对材料性能影响很大,DURAN-HMENEZA等[32]通过微波热解法制备生物质碳,当微波辐照时间为3 min时材料比表面积最大,随辐照时间延长材料比表面积开始下降。这是由于微波辐照时间太短前驱体热解不充分,但微波辐照时间超过3 min时,样品吸收更多能量导致材料过热,破坏了最佳结构,导致产物比表面积下降。

图2 微波功率对微波热解动力学参数的影响[30]
Fig.2 Influence of microwave power on the kinetic parameters of microwave pyrolysis[30]

表1对3种碳化方法进行了综合比较,相较于水热碳化法与微波热解法,高温热解法具有温度范围宽、气氛可控、操作简单、碳化程度高的优势,且易与其他调控方式结合弥补自身缺点,在生物质碳基体制备方面更具发展前景。

表1 不同生物质碳制备方式综合比较[33]
Table 1 Comprehensive comparison of different biomass carbon preparation methods[33]

2 生物质碳基底物化结构定向调控

反应物与催化活性位点的充分接触是提升催化剂催化性能的关键[34]。因此,用以负载活性位点的基底材料需具有高比表面积和丰富的孔道结构,以充分暴露催化活性位点、促进电解液离子扩散[35],使反应物与活性位点充分接触,提升催化剂催化性能。然而,以生物质为前驱体直接碳化所制得生物质碳,其物化结构往往难以满足上述要求。研究人员在生物质碳基底制备过程中通过物理法、化学法等活化策略进行定向调控,以改善碳材料孔隙分布,优化其结构特征。下面介绍几种常见的活化策略。

2.1 物理法

物理活化法是将生物质碳化后与水蒸气、二氧化碳、空气等气体在一定温度下接触反应,使碳材料形成众多孔隙结构,因此又被称为气体活化法。生物质先在较低温度区间进行热解提高碳元素含量,活化过程发生在温度较高的区间,在活化剂作用下,富碳前驱体经异构重整反应,孔结构形成,比表面积增加[36-37]。采用物理活化法制备生物质碳,活化温度是影响材料性能的主要因素。TAER等[38]以CO2为活化剂探究了不同活化温度对生物质碳性能影响,结果表明,随温度升高碳纤维长度缩短,碳含量上升。

2.2 化学法

化学活化法是利用KOH、NH3、H3PO4等强腐蚀性化学试剂浸渍生物质原料,在碳化过程中前驱体受活化剂腐蚀形成多孔结构[39]。与物理活化相比,化学活化具有反应温度低、产量高、效率高等优点。KOH会与生物质中官能团和侧链发生反应形成少量大孔,随温度进一步增加,KOH及其转化产物(K2CO3和K2O)会与原料中碳原子发生反应,形成大量微孔[40]。LIU等[41]以KOH为活化剂制得比表面积达1 732.6 m2/g的生物质碳。H3PO4会与生物质中氢氧根发生反应,形成受热易分解的高分子磷酸盐促进介孔产生,NH3通过腐蚀含碳自由基促进微孔产生。MA等[13]将生物质废弃物在磷酸溶液中水热处理,然后在氨气流下干燥和热处理。最终经高温热解制得N、P双掺杂生物质碳,其比表面积高达2 675 m2/g,对OER表现出优异的催化性能。

2.3 模板法

模板指具有多孔结构的刚性无机物或具有官能团的超分子。将模板混合至前驱体中进行高温碳化,随后将产物中模板洗去形成不同孔隙结构,以此制备多孔碳材料的方法即为模板法。模板剂会渗透到前驱体中,碳化后去除模板从而形成孔隙结构(图3(a))[42],或将前驱体填充到具有特定结构的模板中,碳化后去除模板形成孔隙结构(图3(b))[43]。模板法可通过控制模板剂种类和含量实现生物质碳孔隙结构定向调控,并促进介孔形成[44]。根据所选模板剂类型,模板法可分为硬模板法和软模板法。硬模板法是指利用MgO、CaCO3、ZnO、Fe2O3、SiO2和NaCl等硬质模板作为模板剂制备生物质碳的方法。ZHU等[45]以MgO为模板制得孔径大小集中在2~5 nm处,比表面积高达1 260 m2/g的生物质碳。SHEN等[46]以木质素为前驱体,NaCl/ZnCl2为混合模板,制得比表面积达1 289 m2/g的生物质碳。模板经高温膨胀、蒸发以及后续酸洗,产生了大量微孔与介孔。软模板法通常在溶液中进行,软模板剂所含官能团可与前驱体分子产生相互作用力(氢键、范德华力及静电相互作用等),进而形成胶束。在碳化过程中胶束会分解留下碳源,形成多孔碳材料[47]。XIAO等[48]以P123为模板,并加入二氧化硅,在水热条件下P123与前驱体形成的胶束会沿二氧化硅形成的骨架生长,使生物质碳产生有序介孔结构。WU等[49]以F127为模板,制备了形貌可控的氮掺杂生物质碳。F127可以调控生物质碳形成更多孔状和管状结构,促进有序介孔形成,提高材料石墨化程度。

图3 模板法制备生物质碳示意
Fig.3 Schematic diagram of biomass carbon preparation using template method

不同制备方法制得生物质碳孔隙结构见表2,以生物质为前驱体运用不同活化策略制备碳材料,生物质碳性能会有较大差异。物理活化与化学活化所使用活化剂在高温下可与生物质前驱体中的自由基发生反应产生更多微孔,所制得生物质碳比表面积大、孔容低、平均孔径小。而模板法制得生物质碳孔隙以介孔为主,其比表面积偏低、孔容高、平均孔径大[50-51]。因此,选择不同活化方法,可对生物质碳物化结构进行定向调控以满足电解水催化需求,展现了以廉价环保的生物质为前驱体制备电解水催化剂碳基底的巨大潜力。

表2 不同制备方法制得生物质碳孔隙结构
Table 2 Preparation of biomass carbon pore structure by different preparation methods

3 生物质碳基电解水催化剂构筑及应用

经适当调控,生物质碳的物化结构完全可以满足作为构筑电解水催化剂基底的需求。为解决碳材料本征催化活性差的问题,研究人员对生物质碳基底进行杂原子掺杂和金属负载,制得了生物质碳基电解水催化剂。下面对近年来生物质碳基电解水催化剂的研究进展进行了总结。

3.1 析氧反应催化剂

析氧反应(Oxygen Evolution Reaction, OER)涉及4个电子的转移。在酸性溶液(2H2O=O2 4e-)和碱性溶液(2OH-=H2O 1/2O2 2e-)中所涉及中间体不同,因此反应机理不同,具体机理如图4所示[63-65](*为活性位点,O*、OH*和OOH*为吸附在活性位点上的反应中间体)。以生物质碳为基底进行N、P等杂原子掺杂,是构筑生物质碳基OER催化剂的有效方法。由于杂原子电负性与碳原子不同,杂原子掺杂可以产生缺陷调节碳的电子结构。优化反应物及反应中间体吸附和解吸过程,提升材料OER催化性能[66-67]。KIM等[68]制备了具有纳米孔状结构的N、P双掺杂生物质碳(PPC)。PPC在2 mA/cm2电流密度下OER过电位为500 mV。这种高催化活性得益于杂原子掺杂增加了吸附氧活性位点,以及较大比表面积使活性位点充分暴露。HUANG等[69]制得N自掺杂多孔碳纳米材料(NPCNS-900),NPCNS-900具有分层多孔结构,且吡啶N含量较高,吡啶N对O和OH的吸附能适中,其Tafel斜率为191 mV/dec。

图4 析氧反应机理
Fig.4 Oxygen evolution reaction mechanism

相比其他金属,贵金属Ir或Ru的氧化物或异质结构具有较深的d带中心位置,对OER中间体吸附能适中,具有优异的催化性能[70]。LIN等[71]成功合成了具有Ru-FeNi异质结构的氮掺杂木质素碳基催化剂,其在10 mA/cm2电流密度下OER过电位仅为198 mV。为降低成本,研究者们在生物质碳负载过渡金属(Fe、Co、Ni等)方面进行了大量研究[72]。HU等[73]合成了Co、N、B共掺杂生物质碳基催化剂,在10 mA/cm2电流密度下OER过电位低至286 mV。PANG等[74]以天然芭蕉木为前驱体,制备了FeCo合金负载的层状多孔生物质碳(FeCo@NS-CA),在10 mA/cm2电流密度下OER过电位为450 mV,与贵金属催化剂RuO2活性相当。

3.2 析氢反应催化剂

析氢反应(Hydrogen Evolution Reaction, HER)在酸性溶液(2H 2e-=H2)和碱性溶液(2H2O 2e-=H2 2OH-)中反应机理不同,如图5所示[75-78](H*为吸附在活性位点上的反应中间体)。

图5 析氢反应机理
Fig.5 Hydrogen evolution reaction mechanism

根据Sabatier理论,催化剂表面与H 之间相互作用不宜过弱或过强。若相互作用太弱,H 在催化剂表面吸附效果较差[79],相互作用太强,产物不易脱附,限制整体反应速率[80]。研究发现,具有杂原子掺杂的生物质碳基催化剂展现出了优异的HER催化性能。CAO等[81]成功制备了N自掺杂生物质碳(BS-800),BS-800在10 mA/cm2电流密度下HER过电位为413 mV。且BS-800稳定性良好,可在酸性条件下稳定循环2 000次。Pt、Ag等贵金属具有优异的HER催化性能[82];JI等[83]在葡萄糖基氮掺杂碳纳米片中成功负载Ag纳米颗粒,并进行磷化处理,制得高效HER催化剂。在10 mA/cm2电流密度下HER过电位仅78 mV。研究者通过开发过渡金属催化剂以降低HER催化剂成本。LV等[84]通过Ni3S2负载,制备了生物质碳基催化剂(Ni3S2-NGQDs/NF)。Ni3S2颗粒与碳基底形成了良好的界面协同效应,具有优异的HER催化性能。WANG等[85]制备了N自掺杂生物质介孔碳(NMC),且进行了Cu6L6负载制得(Cu6L6@NMC)。Cu6L6均匀分散在碳基底上,其Tafel斜率较小,10 mA/cm2电流密度下过电位仅60 mV。且循环稳定性良好,经过2 000次循环长达10 h HER测试,仍可保持稳定电流。

3.3 OER/HER双功能催化剂

OER与HER往往在同一个装置中进行,不同催化剂难以在相同电解液中发挥最佳性能。为简化装置、降低成本,开发OER/HER双功能催化剂一直以来是研究人员关注的重点[86]。在碳材料中引入其他非金属元素(N、P、S等)作为活性位点,可提高材料双功能催化效果。引入N原子是迄今为止最有效的方法,N掺杂可引起临近碳原子电荷重新排布,增强其吸附能力[87]。N掺杂可改变价轨道能级,并影响电子转移,从而促进吸附氢还原为H2。催化剂中电负性较强的N原子诱导邻近碳原子促进其对OH-等OER中间体吸附,促进O—H键断裂,有利于OER中间产物(如O*)重组生成O2,降低OER活化能。氮掺杂主要分为3种类型:六元结构中与2个碳原子结合形成的吡啶氮、五元结构中与2个碳原子结合形成的吡咯氮以及通过sp2杂化与石墨结构中3个C原子结合形成的石墨氮[88]。其中吡啶氮吸附能适中,是理想的氮掺杂方式[69]。但吡啶氮、吡咯氮通常在石墨碳层边缘或空穴处形成,含量过高会导致缺陷增多,从而降低材料电导率,阻碍电子转移,影响催化性能[89]。LIU等[90]以玉米秸秆为前驱体,三聚氰胺为氮原子供体,制备了氮掺杂多层多孔生物质碳纳米片(NPCSS)。NPCSS具有大量活性位点和较高比表面积,在10 mA/cm2电流密度下OER与HER过电位分别为358和195 mV。

研究人员通过负载金属,进一步增强了生物质碳基材料OER/HER双功能催化剂催化性能。LIU等[91]制得Fe3O4纳米颗粒修饰的氮掺杂OER/HER双功能催化剂(Fe3O4/NCMTs-800(IL))。如图6所示,Fe3O4/NCMTs-800(IL)具有空心多孔碳微管结构,Fe3O4纳米颗粒均匀分布在空心多孔碳微管上,不仅提供了更多活性位点,且材料导电性增强。Fe3O4/NCMTs-800(IL)对OER和HER均具有较小过电位,且循环稳定性强。HOANG等[92]制备了Ni掺杂碳基复合材料(PC-Ni),且保留了前驱体中天然存在的磷原子与氧原子。试验表明随着Ni负载量增加,PC-Ni催化活性先上升后下降,Ni质量负载量为19.3%时材料催化活性最佳,在10 mA/cm2电流密度下OER与HER过电位分别为368和297 mV。

图6 Fe3O4/NCMTs-800(IL)制备示意[91]
Fig.6 Schematic diagram of Fe3O4/NCMTs-800(IL) preparation[91]

表3列举了以生物质为前驱体所制得OER/HER双功能催化剂,对生物质碳改性处理并进行非贵金属负载可制得过电位较低的双功能催化剂,展现出良好的应用前景。

表3 生物质碳基催化剂10 mA/cm2电流密度下OER/HER过电位
Table 3 OER/HER overpotential of biomass carbon-based catalysts at 10 mA/cm2 current density

3.4 杂化电解水

近年来,研究者们提出了一种更加高效的杂化电解水(Hybrid Water Electrolysis)策略,即利用反应电位更低的有机小分子电化学氧化取代传统电解水中阳极上反应电位较高的OER,并耦合阴极HER,以此辅助电解水高效制氢[101-102]。用于杂化电解水辅助制氢的有机小分子主要包括尿素、肼以及醇类等[101,103]

尿素电解的标准热力学电势为0.37 V,远小于水电解的1.23 V,因此尿素氧化反应(Urea Oxidation Reaction, UOR)可以成为阳极OER的有效替代方案[104]。LU等[105]用蛋壳膜制备了分级多孔碳并进行了氧化镍纳米颗粒负载,并用于催化电化学尿素氧化反应。在10 mA/cm2电流密度下,其电势仅为1.36 V。肼氧化反应(Hydrazine Oxidation Reaction, HzOR)的标准电位为-0.33 V,利用肼辅助电解水制氢可以极大提高电解水效率[106]。葡萄糖、甘油等醇类在阳极可通过电化学氧化反应转化为相应的醛类或羧酸类化学品[107]。利用合适的醇类与阴极HER耦合,不仅可以降低整个电解水的电势,还能在阳极获得具有更高价值的产物[108-109]。LI等[110]成功制得Co纳米颗粒负载的生物质碳基催化剂并用于葡萄糖电催化氧化(Glucose Oxidation Reaction, GOR)耦合HER制氢。在1.56 V低电势下即可获得10 mA/cm2的电流密度,比同电流密度水分解所需电势低180 mV,且产生了具有高附加值的甲酸。

4 结语与展望

以廉价易得、对环境友好的生物质为前驱体,利用不同碳化方法进行碳化处理,可制得不同物化性质的生物质碳。运用不同活化策略对生物质碳活化,可实现生物质碳物化性质定向调控,极大优化了生物质碳结构性能,使其在构筑电解水催化剂方面展现出巨大潜力。N、P等杂原子掺杂可以调整碳的电子结构,优化OER与HER反应中间体的吸附和脱附,且有利于电子转移。将过渡金属负载于生物质碳,可提供更多催化活性位点。2种方法协同作用制得的生物质碳基电解水催化剂,其性能甚至可与传统贵金属催化剂相媲美,但大规模使用生物质碳基电解水催化剂仍存在尚需解决的问题:

1)生物质碳的微孔与介孔比例会对电解水催化产生很大影响。单一活化方法往往只对一种孔隙结构进行调整,难以满足需求。因此,为实现生物质碳孔隙结构定向调控,需多种不同活化方法联合使用。进一步探索不同活化方法之间的相互作用机制,将是未来研究的重点内容。

2)导电性是影响催化剂性能的重要因素,催化剂导电性受碳基底石墨化程度影响。大多数生物质前驱体是硬碳,碳环结构向石墨片层结构转化势垒很大。通过超高温处理提高材料石墨化程度,不仅对设备性能要求极高,且难以与活化、改性等同时进行,使工艺流程变得复杂。在生物质热解过程中,加入过渡金属催化剂,以及将生物质与易石墨化的软碳(煤沥青等)混合热解,以提升生物质碳石墨化程度将是未来研究热点。

3)电解质溶液对整个电极表面覆盖程度也是决定其催化性能的关键因素。电解水产生的氢气与氧气大量汇集产生气泡,气泡附着于电极表面阻碍了其他反应物与活性位点接触,导致催化性能降低。提升电极材料亲水性,可加速气泡从电极表面释放,进而提高电解水效率。因此,未来研究中,可通过提高生物质碳表面粗糙度增强毛细力,以及在碳材料表面引入羟基、羧基等极性基团改善表面能等方式,使碳基体形成超亲水表面,进而提高电极材料亲水性。

4)生物质碳基电解水催化剂往往是粉末状,在商业化应用过程中需使用黏结剂将其固定到电极上进行成型处理,黏结剂的覆盖阻碍了活性位点与反应物接触,降低催化效果。合理保持生物质原生结构,制备块体催化材料,开发更加经济高效的催化剂成型方式,将可解决生物质碳基电解水催化剂商业化应用面临的关键问题。

参考文献(References):

[1] 丁宁, 陈千惠, 刘丹禾, 等. 制储氢技术经济性分析与前景展望[J]. 洁净煤技术, 2023, 29(10): 126-144.

DING Ning, CHEN Qianhui, LIU Danhe, et al. Technical economic prospect on hydrogen production and storage strategy: A critical analysis[J]. Clean Coal Technology, 2023, 29(10): 126-144.

[2] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520. LI Liangrong, PENG Jian, FU Bing, et al. Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 508-520.

[3] 胡兵, 徐立军, 何山, 等. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604.

HU Bing, XU Lijun, HE Shan, et al. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604.

[4] 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1), 118-131.

WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of green hydrogen energy produced by water electrolysis from renewable energy[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 118-131.

[5] LI H, MA W Y, MA X L, et al. Multifunctional salt-assisted construction of lignin-derivedRu-Co bimetal/carbon composites with rich nanointerface for electrocatalytic water splitting[J]. ACS Sustainable Chemistry &Engineering, 2022, 10(49): 16214-16224.

[6] JIANG H, GU J X, ZHENG X S, et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER[J]. Energy &Environmental Science, 2019, 12(1): 322-333.

[7] XUE Y Q, YAN Q, BAI X J, et al. Ruthenium-nickel-cobalt alloynanoparticles embedded in hollow carbon microtubes as a bifunctional mosaic catalyst for overall water splitting[J]. Journal of Colloid and Interface Science, 2022, 612: 710-721.

[8] JAMESH M I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reactionbifunctional electrocatalyst for overall water splitting in alkaline media[J]. Journal of Power Sources, 2016, 333: 213-236.

[9] 李彦洗, 龚奇菡, 薄雅文, 等. 用于电解水制氢的过渡金属有机骨架基催化剂[J]. 化学通报, 2023, 86(5): 523-534.

LI Yanxi, GONG Qihan, BO Yawen, et al. Transition metal MOFs-based materials for hydrogen evolving reaction from water electrolysis[J]. Chemistry Bulletin, 2023, 86(5): 523-534.

[10] JIN H Y, WANG J, SU D F, et al. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superiorbifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society, 2015, 137(7): 2688-2694.

[11] 崔鹏, 李庭震, 彭新文. 生物质碳基电催化剂研究进展[J]. 中国造纸, 2022, 41(7): 74-84.

CUI Peng, LI Tingzhen, PENG Xinwen. Research progress of biomass carbon-based electrocatalysts[J]. China Pulp and Paper, 2022, 41(7): 74-84.

[12] 王诗雨, 薛珊, 杨涛, 等. 生物质碳基催化材料研究进展[J]. 应用化工, 2021, 50(7): 1962-1967:1972.

WANG Shiyu, XUE Shan, YANG Tao. et al. Recent development on biomass carbon-based catalytic materials[J]. Applied Chemical Industry, 2021, 50(7): 1962-1967,1972.

[13] MA L L, HU X, LIU W J, et al. Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts[J]. Chemosphere, 2021, 278:130508.

[14] DENG J, LI MM, WANG Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion[J].Green Chemistry, 2016, 18(18): 4824-4854.

[15] AO W Y, FU J, MAO X, et al. Microwave assisted preparation of activated carbon from biomass: A review[J]. Renewable &Sustainable Energy Reviews, 2018, 92: 958-979.

[16] DENG J, XIONG T Y, WANG H Y, et al. Effects of cellulose,hemicellulose, and lignin on the structure and morphology of porous carbons[J]. ACS Sustainable Chemistry &Engineering, 2016, 4(7): 3750-3756.

[17] ROSAS J M, BERENGUER R, VALERO-ROMERO M J, et al. Preparation of different carbon materials bythermochemical conversion of lignin[J]. Frontiers in Materials, 2014(1): 29.

[18] 雷永珍, 晏倩倩, 温焕, 等. 生物质基碳材料制备及其电化学储能研究[J]. 宝鸡文理学院学报, 2022, 42(1): 50-57.

LEI Yongzhen, YAN Qianqian, WEN Huan, et al. Preparation and electrochemical energy storage of biomass-based carbon materials[J]. Journal of Baoji University of Arts and Sciences, 2022, 42(1): 50-57.

[19] 彭何欢, 徐佳佳, 吴有龙, 等. 温度对纤维素半纤维素和木质素热解碳理化性能影响[J]. 农业工程学报, 2018, 34(S1): 149-156.

PENG Hehuan, XU Jiajia, WU Youlong, et al. Effect of pyrolysis temperature on physicochemical properties of biochar produced from cellulose, hemicellulose and lignin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 149-156.

[20] DEBEVC S, WELDEKIDAN H, SNOWDON M R, et al. Valorization of almond shell biomass tobiocarbon materials: Influence of pyrolysis temperature on their physicochemical properties and electrical conductivity[J]. Carbon Trends, 2022, 9:100214.

[21] 陈莉, 温康鑫, 杜智, 等.热解条件对秸秆热解特性及生物碳产率影响[J]. 哈尔滨工业大学学报, 2020, 52(11): 26-32.

CHEN Li, WEN Kangxin, DU Zhi, et al. Effects of pyrolysis conditions on pyrolysis characteristics and biochar yield of straw[J]. Journal of Harbin Institute of Technology, 2020, 52(11): 26-32.

[22] SUPRIYA B S, NAGARAJA P, BYRAPPA K. Hydrothermal synthesis and characterization of carbon spheres using citric-acid-catalyzed carbonization of starch[J]. e-Polymers, 2015, 15(3): 179-183.

[23] 文世涛, 仲美娟, 尚莉莉, 等. 水热碳化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(S2): 28-32.

WEN Shitao, ZHONG Mejuan, SHANG Lili, et al. Research advance of biomass-based carbon nanomaterials by hydrothermal carbonization[J]. Materials Reports, 2021, 35(S2): 28-32.

[24] DODEVSKI V, KALUEROVIC B, S, et al. Optimization of active carbonaceous material obtained by low hydrothermal carbonization of plane tree seed with H3PO4[J]. Journal of Nano Research, 2017, 48: 71-84.

[25] 李正文, 张小伟, 章文贵, 等. 水热碳化反应条件对淀粉碳化材料性能影响[J]. 南京工业大学学报, 2013, 35(6):97-102.

LI Zhengwen, ZHANG Xiaowei, ZHANG Wengui, et al. Effects of hydrothermal carbonization condition on characteristics of starch carbonaceous spheres[J]. Journal of Nanjing University of Technology, 2013, 35(6):97-102.

[26] PARSHETTI G K, HOEKMAN S K, BALASUBRAMANIAN R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches[J].Bioresource Technology, 2013, 135, 683-689.

[27] 赵文祥, 周金余, 陈龙, 等. 市政污泥生物质碳制备及吸附与催化性能研究[J]. 化学研究与应用,2022,34(10): 2531-2537.

ZHAO Wenxiang, ZHOU Jinyu, CHEN Long, et al. Preparation and adsorption and catalytic performance of municipal sludge biochar[J]. Chemical Research and Application, 2022, 34(10): 2531-2537.

[28] FUERTES A B, ARBESTAIN M C, SEVILLA M, et al. Chemical and structural properties of carbonaceous products obtained bypyrolysis and hydrothermal carbonisation of corn stover[J]. Soil Research, 2010, 48:618-626.

[29] KUMAR N S, GREKOV D, PRÉ P, et al. Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications-An overview[J]. Renewable &Sustainable Energy Reviews, 2020, 124(C):109743-109743.

[30] HUANG Y F, CHIUEH P T, KUAN W H, et al. Microwavepyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics[J]. Energy, 2016, 100:137-144.

[31] MATVEEV E V, GAJDAR A I, LAPSHINOV B A, et al. Microwave carbonization of cotton fiber for production of carbon materials[J]. Inorganic Materials: Applied Research, 2022, 13(2):549-559.

[32] DURN-JIMÉNEZA G, HERNNDEZ-MONTOYAA V, MONTES-MORN M A, et al. Microwave pyrolysis of pecan nut shell and thermogravimetric, textural and spectroscopic characterization of carbonaceous products[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135:160-168.

[33] 吴钊峰, 沈超, 孙启花, 等. 生物质碳材料的制备与若干应用研究新进展[J]. 北京工业大学学报, 2023, 49(11): 1232-1250.

WU Zhaofeng, SHEN Chao, SUN Qihua, et al. New progress in the preparation and application of biomass carbon materials[J]. Journal of Beijing University of Technology, 2023, 49(11): 1232-1250.

[34] 许芮, 宋伟明, 孙立, 等. 氧化裂化合成生物质碳材料及其电化学性能研究[J]. 功能材料, 2020, 51(4):4124-4131.

XV Rui, SONG Weiming, SUN Li, et al. Synthesis of biomass carbon materials by oxidative cracking and their electrochemical performance[J]. Jorunal of Functional Materials, 2020, 51(4):4124-4131.

[35] 姚祯, 张琦, 王锐, 等. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091.

YAO Zhen, ZHANG Qi, WANG Rui, et al. Application of biomass derived carbon materials in all vanadium flow battery electrodes[J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091.

[36] DI S C, GRECO G, CANEVESI R L S, et al. Influence of activation conditions on textural properties and performance of activatedbiochars for pyrolysis vapors upgrading[J]. Fuel, 2021, 289:119759.

[37] SAJJADI B, CHEN W Y, EGIEBOR N O, et al. A comprehensive review on physical activation ofbiochar for energy and environmental applications[J]. Reviews in Chemical Engineering, 2019, 35(6):735-776.

[38] TAER E, APRIWANDI, TASLIM R, et al. The effect of physical activation temperature on physical and electrochemical properties of carbon electrode made fromjengkol shell (Pithecellobium jiringa) for supercapacitor application[J]. Materials Today, 2021, 44:3341-3345.

[39] 王才威, 杨东杰, 邱学青, 等. 木质素多孔碳材料在电化学储能中应用[J]. 化学进展, 2022, 34(2):285-300.

WANG Caiwei, YANG Dongjie, QIU Xueqing, et al. Applications of lignin-derived porous carbons for electrochemical energy storage[J]. Progress in Chemistry, 2022, 34(2):285-300.

[40] SAKHIYA A K, ANAND A, KAUSHAL P. Production, activation, and applications ofbiochar in recent times[J]. Biochar, 2020, 2(3):253-285.

[41] LIU Y, ZHANG M Y, WANG L Q, et al. A biomass carbon material with microtubule bundling and natural O-doping derived fromgoldenberry calyx and its electrochemical performance in supercapacitor[J]. Chinese Chemical Letters, 2020, 31(3):805-808.

[42] ZHANG W, LIN M H, CHENG RR, et al. Molten metal chloride salt template synthesis of N/S Co-doped porous carbon nanosheets for supercapacitors[J]. Diamond and Related Materials, 2021, 113:108278.

[43] 王焕磊, 高秋明. 多孔碳材料的模板法制备、活化处理及储能应用[J]. 高等学校化学学报, 2011, 32(3):462-470.

WANG Huanlei, GAO Qiuming. Template synthesis, activation and energy storage application of porous carbon materials[J]. Chemical Journal of Chinese Universities, 2011, 32(3):462-470.

[44] ZHANG W, CHENG RR, BI H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials, 2021, 36(1):69-81.

[45] ZHU C Y, AKIYAMA T. Cotton derived porous carbon via anMgO template method for high performance lithium ion battery anodes[J]. Green Chemistry, 2016, 18(7):2106-2114.

[46] SHEN Y X, LI Y H, YANG G X, et al. Lignin derived multi-doped (N, S,Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 44(5):106-114.

[47] ZHANG W, CHENG RR, BI H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. Carbon, 2021, 36(1):69-81.

[48] XIAO P W, ZHAO L, SUI Z Y, et al. Direct synthesis of orderedmesoporous hydro thermal carbon materials via a modified soft-templating method[J]. Microporous and Mesoporous Materials, 2017, 253:215-222.

[49] WU Q, GAO MM, ZHANG G Y, et al. Preparation and application performance study of biomass-based carbon materials with various morphologies by a hydrothermal/soft template method[J]. Nanotechnology Reviews, 2019, 30(18):185702.

[50] WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(6): 2411-2428.

[51] GUO L Y, LI J F, LU Z W, et al. Biomass-derived carbon-basedmulticomponent integration catalysts for electrochemical water splitting[J]. ChemSusChem, 2023, 16(17): e202300214.

[52] LU X W, XIANG K X, ZHOU W, et al. Biomass carbon materials derived from macadamia nut shells for high-performancesupercapacitors[J]. Bulletin of Materials Science, 2018, 41:1-7.

[53] XIE A, DAI J D, CHEN Y, et al.NaCl-template assisted preparation of porous carbon nanosheets started from lignin for efficient removal of tetracycline[J]. Advanced Powder Technology, 2019, 30(1):170-179.

[54] WANG D, GENG Z, LI B, et al. High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons[J].Electrochimica Acta, 2015, 173:377-384.

[55] LUO J D, ZHANG H, ZHANG Z, et al. In-built template synthesis of hierarchical porous carbonmicrocubes from biomass toward electrochemical energy storage[J]. Carbon, 2019, 155:1-8.

[56] TIAN J Y, LIU Z M, LI Z G, et al. Hierarchical S-doped porous carbon derived from by-product lignin for high-performancesupercapacitors[J]. RSC Advances, 2017, 7(20):12089-12097.

[57] ZHANG T, WALAWENDER W P, FAN L T, et al. Preparation of activated carbon from forest and agricultural residues through CO2 activation[J]. Chemical Engineering Journal, 2004, 105(1/2): 53-59.

[58] PURKAIT T, SINGH G, SINGH M, et al. Large area few-layergraphene with scalable preparation from waste biomass for high-performance supercapacitor[J]. Scientific Reports, 2017, 7(1):15239.

[59] XIAO P W, ZHAO L, SUI Z Y, et al. Direct synthesis of ordered mesoporous hydro thermal carbon materials via a modified soft-templating method[J]. Microporous and Mesoporous Materials, 2017, 253:215-222.

[60] LI H S, SHI F Y, AN Q D, et al. Three-dimensional hierarchical porous carbon derived from lignin forsupercapacitors: Insight into the hydrothermal carbonization and activation[J]. International Journal of Biological Macromolecules, 2021, 166:923-933.

[61] GONG Y T, WANG H Y, WEI ZZ, et al. An efficient way to introduce hierarchical structure into biomass-based hydrothermal carbonaceous materials[J]. ACS Sustainable Chemistry &Engineering, 2014, 2(10):2435-2441.

[62] ÖZHAN A, AHIN Ö, KÜÇÜK M M, et al. Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue[J]. Cellulose, 2014, 21:2457-2467.

[63] ISABELA C M, SU H Y, FEDERICO C V, et al. Universality in oxygen evolutionelectrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7):1159-1165.

[64] 王雪, 王意波, 王显, 等. 酸性电解水过程中氧析出反应机理及铱基催化剂研究进展[J]. 应用化学, 2022, 39(4):616-628.

WANG Xue, WANG Yibo, WANG Xian, et al. Research progress of mechanism of acidic oxygen evolution reaction and development of Ir-based catalysts[J]. Chinese Journal of Applied Chemistry, 2022, 39(4):616-628.

[65] ANANTHARAJ S, KUNDU S, NODA S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts[J].Nano Energy, 2021, 80:105514.

[66] 杜英侠, 刘瑞, 鲁望婷, 等. 生物质衍生碳材料电催化裂解水研究进展[J]. 武汉大学学报, 2022, 68(2):123-130.

DU Yingxia, LIU Rui, LU Wangting, et al. Research progress of biomass-derived carbon materials as catalysts for electrochemical water splitting[J]. Journal of Wuhan University, 2022, 68(2):123-130.

[67] WANG H F, TANG C, ZHANG Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-Air batteries[J]. Advanced Functional Materials, 2018, 28(46):1803329.

[68] KIM J, PARK J, LEE J, et al. Biomass‐derived P, N self‐doped hard carbon asbifunctional oxygen electrocatalyst and anode material for seawater batteries[J]. Advanced Functional Materials, 2021, 31(22):2010882.

[69] HUANG Y, WU D F, CAO D P, et al. Facile preparation of biomass-derivedbifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. International Journal of Hydrogen Energy, 2018, 43(18):8611-8622.

[70] WU D, KUSADA K, YAMAMOTO T,et al. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles[J]. Chemical Science, 2020, 11(47): 12731-12736.

[71] LIN X L, LIU J L, QIU X Q, et al.Ru-FeNi alloy heterojunctions on liginin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting[J]. Angewandte Chemie, 2023, 135(33): e202306333.

[72] SEKHON S S, LEE J, PARK J S. Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: A review[J]. Journal of Energy Chemistry, 2022, 65(2):149-172.

[73] HU Q, LI G M, HAN Z, et al. General synthesis of ultrathin metal boratenanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis[J]. Advanced Energy Materials, 2019, 9(28):1901130.

[74] PANG H P, SUN PP, GONG H Y, et al. Wood-derived bimetallic and heteroatomic hierarchically porous carbon aerogel for rechargeable flow Zn-Air batteries[J]. ACS Applied Materials &Interfaces, 2021, 13(33):39458-39469.

[75] FARES A, AMANI A R, MUHAMMAD T, et al. A comprehensive review of hydrogen generation by water splitting using 2Dnanomaterials: Photo vs electro-catalysis[J]. Fuel, 2023, 332:125905.

[76] 高铭泽, 刘民, 何潇宇, 等. 新型键联异质结CoMOF-g-C3N4-COOH用于可见光光解水产氢反应[J]. 石油学报, 2022, 38(4):811-818.

GAO Mingze, LIU Min, HE Xiaoyv, et al. Bonding heterojunction CoMOF-g-C3N4-COOH for the enhanced photocatalytic H2 production under visible-light irradiation[J]. Acta Petrolei Sinica, 2022, 38(4):811-818.

[77] DURST J, SIEBEL A, SIMON C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy &Environmental Science, 2014, 7(7):2255-2260.

[78] YV P, WANG F M, SHIFA T A, et al. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction[J]. Nano Energy, 2019, 58:244-276.

[79] HUANG C Q, ZHOU J Q, DUAN D S, et al. Roles ofheteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism[J]. Chinese Journal of Catalysis, 2022, 43(8):2091-2110.

[80] STRMCNIK D, UCHIMURA M, WANG C, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption[J]. Nature Chemistry, 2013, 5(4):300-306.

[81] CAO X P, LI Z, CHEN H, et al. Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reactionelectrocatalysis and supercapacitor electrode[J]. International Journal of Hydrogen Energy, 2021, 46(36):18887-18897.

[82] WANG Q C, GUO R, WANG Z H, et al. Progress in carbon-basedelectrocatalyst derived from biomass for the hydrogen evolution reaction[J]. Fuel, 2021, 293: 120440.

[83] JI X Q, LIU B P, REN X, et al. P-dopedag nanoparticles embedded in n-doped carbon nanoflake: An efficient electrocatalyst for the hydrogen evolution reaction[J]. ACS Sustainable Chemistry &Engineering, 2018, 6(4): 4499-4503.

[84] LV J J, ZHAO J, FANG H, et al. Incorporating Nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: A synergistic electrocatalyst with highly enhanced activity for overall water splitting[J]. Small, 2017, 13(24):1700264.

[85] WANG X X, XU X X, FENG Z G, et al. Loading of cluster-based coordination compound on biomass derived N-doped mesoporous carbon matrix: A bifunctional electrocatalyst for overall water splitting[J]. ACS Sustainable Chemistry &Engineering, 2018, 6(8):10282-10288.

[86] YAN Y, XIA B Y, ZHAO B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A, 2016, 4(45):17587-17603.

[87] HALIMA B, SHAMSUDDIN A M, SEUNGHUN J. Hollow carbonnanoballs on graphene as metal‐free catalyst for overall electrochemical water splitting[J]. Advanced Materials Interfaces, 2021, 8(19): 2101265.

[88] INAGAKI M, TOYODA M, SONEDA Y, et al. Nitrogen-doped carbon materials[J]. Carbon, 2018, 132: 104-140.

[89] CHEN H C, SUN F G, WANG J T, et al. Nitrogen doping effects on the physical and chemical properties ofmesoporous carbons[J]. The Journal of Physical Chemistry C, 2013, 117(16): 8318-8328.

[90] LIU Z, ZHOU Q L, ZHAO B, et al. Few-layer N-doped porous carbonnanosheets derived from corn stalks as a bifunctional electrocatalyst for overall water splitting[J]. Fuel, 2020, 280:118567.

[91] LIU G P, WANG B, DING P H, et al.Reactable ionic liquid in situ-induced synthesis of Fe3O4 nanoparticles modified N-doped hollow porous carbon microtubes for boosting multifunctional electrocatalytic activity[J]. Journal of Alloys and Compounds, 2019, 797:849-858.

[92] HOANG V C, GOMES V G, DINH K N. Ni-and P-doped carbon from waste biomass: A sustainable multifunctional electrode for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J].Electrochimica Acta, 2019, 314:49-60.

[93] SEKAR S, AHMED A T A, PAWAR S M, et al. Enhanced water splitting performance of biomass activated carbon-anchored WO3 nanoflakes[J]. Applied Surface Science, 2020, 508:145127.

[94] SEKAR S, AHMED A T A, PAWAR S M, et al. Bimetal-decoratednanocarbon as a superior electrocatalyst for overall water splitting[J]. Journal of Power Sources, 2018, 401:312-321.

[95] HOANG V C, DINH K N, GOMES V. Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: A sustainable bifunctional electrocatalyst for efficient water splitting[J]. Carbon, 2020, 157:515-524.

[96] WANG B, XU L, LIU G P, et al. Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst[J]. Journal of Materials Chemistry A, 2017, 5(38):20170-20179.

[97] AMIINU I S, PU Z H, HE D P, et al. Scalable cellulose-sponsored functionalized carbonnanorods induced by cobalt for efficient overall water splitting[J]. Carbon, 2018, 137:274-281.

[98] SATHISKUMAR C, RAMAKRISHNAN S, VINOTHKANNAN M, et al. Nitrogen-doped porous carbon derived from biomass used astrifunctional electrocatalyst toward oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Nanomaterials, 2019, 10(1):76.

[99] ZHOU B H, ZHANG M C, HE W Y, et al. Blue rose-inspired approach towards highly graphitic carbons for efficientelectrocatalytic water splitting[J]. Carbon, 2019, 150:21-26.

[100] PRABU N, KESAVAN T, MADURAIVEERAN G, et al. Bio-derivednanoporous activated carbon sheets as electrocatalyst for enhanced electrochemical water splitting[J]. Journal of Engineering Mechanics, 2019, 44(36):19995-20006.

[101] PAYGOZAR S, AGHDAM A S R, HASSANIZADEH E, et al. Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(20): 7219-7259.

[102] VEERAMANI K, JANANI G, KIM J, et al. Hydrogen and value-added products yield from hybrid water electrolysis: A critical review on recent developments[J]. Renewable and Sustainable Energy Reviews, 2023, 177: 113227.

[103] CHEN L S, SHI J L. Chemical-assisted hydrogen electrocata-lytic evolution reaction (CAHER)[J]. Journal of Materials Chemistry A, 2018, 6(28): 13538-13548.

[104] GENG S K, ZHENG Y, Li S Q, et al. Nickelferrocyanide as a high-performance urea oxidation electrocatalyst[J]. Nature Energy, 2021, 6(9): 904-912.

[105] LU S, HUMMEL M, GU Z G, et al. Highly efficient urea oxidation via nestingnano-nickel oxide in eggshell membrane-derived carbon[J]. ACS Sustainable Chemistry &Engineering, 2021,9(4): 1703-1713.

[106] WANG J, GUAN X, LI H, et al. Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation[J]. Nano Energy, 2022, 100: 107467.

[107] QIAN Q, HE X, LI Z, et al. Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density[J]. Advanced Materials, 2023, 35(25): 2300935.

[108] LEE D, KIM Y, KWON Y, et al. Boosting theelectrocatalytic glycerol oxidation performance with highly-dispersed Pt nanoclusters loaded on 3D graphene-like microporous carbon[J]. Applied Catalysis B: Environmental, 2019, 245: 555-568.

[109] ZHOU Y, WANG Q W, TIAN X L, et al. Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation [J]. Nano Research, 2022, 15(10): 8936-8945.

[110] LI D, HUANG Y M, LI Z Y, et al. Deep eutectic solvents derived carbon-based efficientelectrocatalyst for boosting H2 production coupled with glucose oxidation[J]. Chemical Engineering Journal, 2022, 430: 132783.

Research progress in directional construction of biomass carbon-based electrolysis water catalysts

LIU Faming, LI Guoning, MA Weiyang, GUO Min, LI Shijie, XIAO Qiangqiang, LU Wanpeng, LI Hui

(School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China)

Abstract:Biomass carbon has the advantages of affordability, environmental friendliness, and adjustable pore structure. It is a good matrix for loading transition metals and has broad application prospects in water electrolysis. The specific surface area, pore size distribution, and other physical and chemical structures of carbon carriers directly affect the utilization of transition metal active sites and electrolyte ion diffusion, which is the key to unleashing the potential of transition metal electrolysis for water catalysis and determining catalyst performance. This article introduced the pyrolysis mechanisms of different biomass, summarized common biomass carbon preparation methods such as high-temperature pyrolysis, hydrothermal carbonization, and microwave pyrolysis, and compared the advantages and disadvantages of different preparation methods. A summary of targeted control strategies for biomass carbon physicochemical structure, including physical, chemical, and template methods, was conducted, and the effects of different control strategies on biomass carbon specific surface area, pore volume, average pore size, and other physicochemical properties were explored. The construction strategies of common biomass carbon-based electrolysis water catalysts, such as doping with heteroatoms and loading with metal active components were summarized. The research status of these catalysts in oxygen evolution reaction, hydrogen evolution reaction, bifunctional catalysis, and hybrid electrolysis of water was also summarized, and the progress made in electrolysis of water was elaborated in detail. And the challenges faced by biomass carbon-based electrolysis water catalysts in controlling micro to mesoporous ratio, improving conductivity, hydrophilicity, and catalyst forming treatment were discussed in the future.

Key wordsbiomass; carbon substrate; catalyst; directional construction; electrolyzed water

收稿日期:2023-10-28;责任编辑:常明然

DOI:10.13226/j.issn.1006-6772.GG23102801

移动阅读

基金项目:山东省自然科学基金资助项目(ZR2021QB185);山东省高等学校青年创新团队发展计划资助项目(2022KJ209);中国博士后科学基金资助项目(2021M702017)。

作者简介:刘法明(2000—),男,山东潍坊人,硕士研究生。E-mail:liufm@163.com

通讯作者:李 辉(1989—),男,山东临沂人,副教授,博士。E-mail:lihui2687459@163.com

引用格式:刘法明,李国宁,马为洋,等.生物质碳基电解水催化剂定向构筑研究进展[J].洁净煤技术,2024,30(3):124-136. LIU Faming, LI Guoning, MA Weiyang,et al.Research progress in directional construction of biomass carbon-based electrolysis water catalysts[J].Clean Coal Technology,2024,30(3):124-136.

中图分类号:TK6;TQ15

文献标志码:A

文章编号:1006-6772(2024)03-0124-13

洁净煤技术
《洁净煤技术》(月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 1494文章总数
  • 168984访问次数
  • 17篇 最新文章
  • 编辑部专区

    联系我们